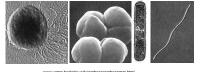
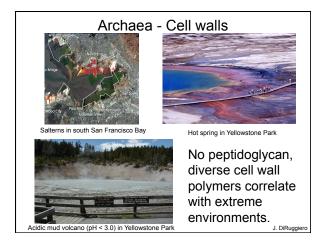
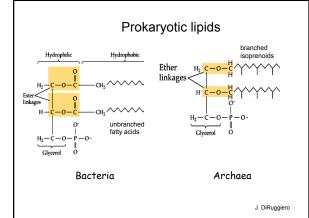

Class announcements

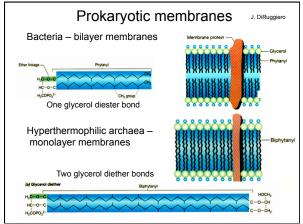
- 1. Today I hope that we'll be able to use clickers
- 2. Today phylogenetic tree homework due
- Review sessions for first mid-term exam @ Today, CSS (Computer/Space Science) room 2324, 12:30-2:00 pm Tuesday, 2/15, PLS1140 (where we hold the GAE's), 9:00-10:30 am
 Bring your questions!
- 4. Use the regular meeting time for your study group to prepare for first mid-term exam
- 5. Wednesday first mid-term exam

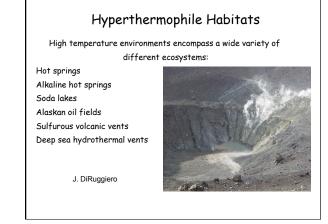

Prokaryotic Diversity II -Coming attractions

- Evolutionary origins
- Basic features
 - Bacteria several major groups
- Bacteria pathogenesis
- Archaea extremophiles
- Metabolic diversity
- Bioenergetics redox reactions
- Bioenergetics electron transport chains
- Biogeochemical cycles

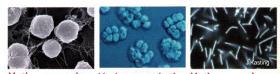


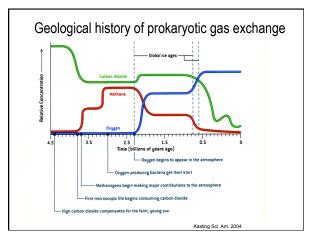

Archaea - Diversity


- Primitive similarity with the Bacteria prokaryotic cells, binary fission, circular chromosome, 70S ribosomes, flagella.
- Derived similarity with the Eukarya shared features of more complex replication, transcription, and translation (e.g., several origins of DNA replication, several RNA ploymerases, histone proteins, met as start amino acid, etc.)
- Most distinctive feature extremophiles often thriving in extreme environmental conditions



Various archaeal species





Methanogens

- 2CO₂ + 6H₂ ---> (CH₂O)_n + CH₄ + 3H₂O
 Strict anaerobes very sensitive to O₂
- Principal producers of natural gas associated with oil reserves (e.g., Archaeoglobus has been isolated from a deep oil well growing at >80 °C.)
- Other habitats swamps ("marsh gas") and animal guts
- Effective greenhouse gas
- Plausible role in Earth's early climate •

Methanococcales Methanosarcinales Methanopyrales

Study questions for Archaea

1.Describe the three major groups of Archaea.

2.Describe the adaptations in the Archaea that seem to contribute to their ability to survive in extreme environments.

3. Support the claim that prokaryotic metabolism has profoundly affected the composition of atmospheric gases over geological time, and thus, this metabolism had transformed the Earth at several times in geological history.

Prokaryotic Diversity II -Coming attractions

- Evolutionary origins
- Basic features
- Bacteria several major groups
- Bacteria pathogenesis
- Archaea extremophiles
- Metabolic diversity
- Bioenergetics redox reactions
- Bioenergetics electron transport chains
- Biogeochemical cycles

Metabolic Diversity - "Feeding Strategies"

All microbial metabolisms can be organized according to 2 principles:

- Carbon source for synthesizing organic molecules:
 A. Autotrophic simple molecules CO₂, CH₄, CH₃OH, CO
 - B. Heterotrophic complex organic molecules $-CO_2$, Cn_4 , Cn_3On , CO_3On
 - B. Heterotrophic complex organic molecules
- II. Energy source for electron transport and ATP synthesis: A. Phototrophic - light
 - B. Chemolithotrophic high-energy inorganic molecules
 - C. Chemoorganotrophic high-energy organic molecules

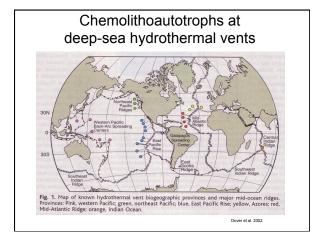
Nutritional mode	Energy source	Carbon source	Examples
Photoautotrophs	Light	CO ₂	Several groups of photosynthetic B
Photoheterotrophs	Light	Organic compounds	Halophilic A
Chemoorgano- autotrophs	Organic compounds	CH ₄	Methanotrophic B
Chemoorgano- heterotrophs	Organic compounds	Organic compounds	Most prokaryotes, inc. saprobes, parasites, and pathogens
Chemolitho- autotrophs	Inorganic com- pounds (S, N, Fe, H ₂ , etc.)	CO ₂ , etc.	Methanogenic A, sulfur oxidizing B, nitrifying B, iron-oxidizing B
Chemolitho- heterotrophs	Inorganic com- pounds (S, N, Fe, H ₂ , etc.)	Organic compounds	various B species

Two hypotheses for the origin of life

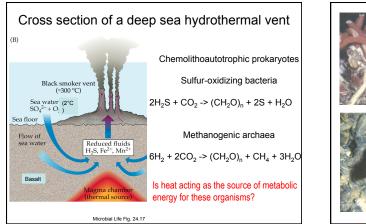
"The original spark of life may have begun in a **1) warm little pond**, with all sorts of ammonia and phosphoric salts, lights, heat, electricity, etc. present, so that a protein compound was chemically formed ready to undergo still more complex changes." - Charles Darwin in a letter to Joseph Hooker, 1871

2) Deep-sea hydrothermal vent Clicker question: Which one do you think is the more likely site of the origin of life?

Be prepared for small group discussions about the origin of life



Warm little pond


Deep-sea hydrothermal vent

1. Compare and contrast these two hypotheses about the site of the origin of life in terms of energy sources, molecule availability, and other physical and chemical features.

2. Construct arguments for favoring either one or both hypotheses.

Small group discussion about the origin of life

Warm little pond

Deep-sea hydrothermal vent

1. Compare and contrast these two hypotheses about the site of the origin of life in terms of energy sources, molecule availability, and other physical and chemical features.

2. Construct arguments for favoring either one or both hypotheses.

Other examples of "strange" microbial ecosystems

Blood falls in Antarctica

Bacteria live 400 m beneath glacier in sea water trapped 1.5 MYA at -5 C.

No light, no O_2 , no nutrients except SO_4^{2-}

Complex chemical cycle – microbial SO_4^{2-} reduction is coupled to inorganic soluble Fe²⁺ oxidation -> Fe₂O₃ (rust)

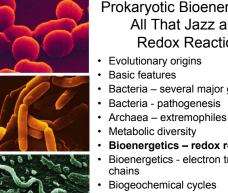
Other examples of "strange" microbial ecosystems

"Radiation-feeding", subterranean prokaryotes

Intact ecosystems of 1 or a few prokaryotes-3 to 25 M year old?!

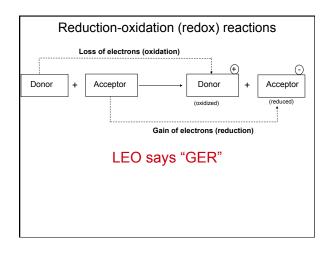
Often several km below the surface - temps of 60 C or more

Division rate – once every 300 years or more


Uranium radiation splits H_2O in H_2 and H_2O_2 (H peroxide) H peroxide reacts with iron pyrite to release SO42-

Candidatus desulforudis from S. African gold mine

Prokaryotes use H_2 and SO_4^2 to generate energy


Possible model for underground life in our Solar System!

Diversity lectures - Summary Ecological - very diverse habitats Morphological - L's shapes (coccus, bacillus, spirillum), other - filament, colony, polymorph Structural - gram-positive vs. gram-negative bacteria, Archaea vs. Bacteria - different cell wall and membrane components Metabolic - different energy and carbon sources, chemoautotrophs in deep-sea vent communities pathogens - evolutionary perspectives (LGT)

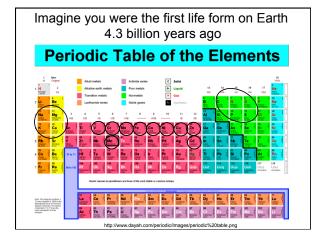
Prokaryotic Bioenergetics I -All That Jazz about **Redox Reactions**

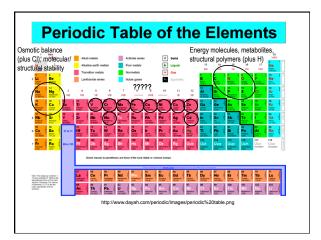
- Bacteria several major groups
- **Bioenergetics redox reactions Bioenergetics - electron transport**

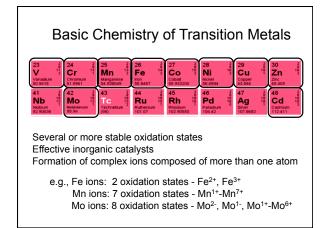
Prokaryotic Bioenergetics: All That Jazz about Reduction-Oxidation (Redox) Reactions

- 1. Redox reactions transform almost the physical and chemical energy entering organisms into useful forms of biological energy.
- 2. Redox reactions are often used to transform the available molecules from the environment into useful metabolites.
- 3. An integrated biological perspective of redox reactions is:

Biomolecules Catalysts/enzymes ETC's
 Organism
 Environment


 Nutritional strategies
 Biogeochemical cycles


 e.g., photoautotrophy,
 e.g., N and S cycles


 chemolithoautotrophy
 Figure 1

Imagine you were the first life form on Earth 4.3 billion years ago

	•	metals in biology
Element	Enzyme/protein	Reaction/process
Iron (Fe)	Cytochromes	Electron carrier in ETC's
	Catalase	$2H_2O_2 \longrightarrow 2H_2O + O_2$
	Hemoglobin	Oxygen carrier
Copper (Cu)	Cytochrome oxidase	$4H^{+} + 4e^{-} + 0_2 \longrightarrow 2H_2O$
	Hemocyanins	Oxygen carrier
Zinc (Zn)	Carbonic anhydrase	$CO_2 + H_2O \longrightarrow H^+ + HCO_3^-$
	Alcohol dehydrogenase	$C_2H_5OH \longrightarrow C_2H_4O + 2H^+$
Molybdenum (Mo)	Nitrogenase	$N_2 \longrightarrow 2NH_3 + H_2$
	Nitrate reductase	$2NO_3 \rightarrow 2NO_2$
Vanadium (V)	Nitrogenase	$N_2 \longrightarrow 2NH_3 + H_2$
Manganese (Mn)	Water-splitting complex	$2H_2O \longrightarrow 4H^+ + 4e^- + O_2$
Cadmium (Cd)	Carbonic anhydrase	$CO_2 + H_2 O \rightleftharpoons H^+ + HCO_3^-$
Nickel (Ni)	Hydrogenases	$H_2 + X_{ox} \iff 2H^+ + X_{red}$