
A New Approach toward Teaching Introductory Organismal Biology

Departments of Cell Biology & Molecular Genetics, Curriculum and Instruction, and Physics University of Maryland, College Park

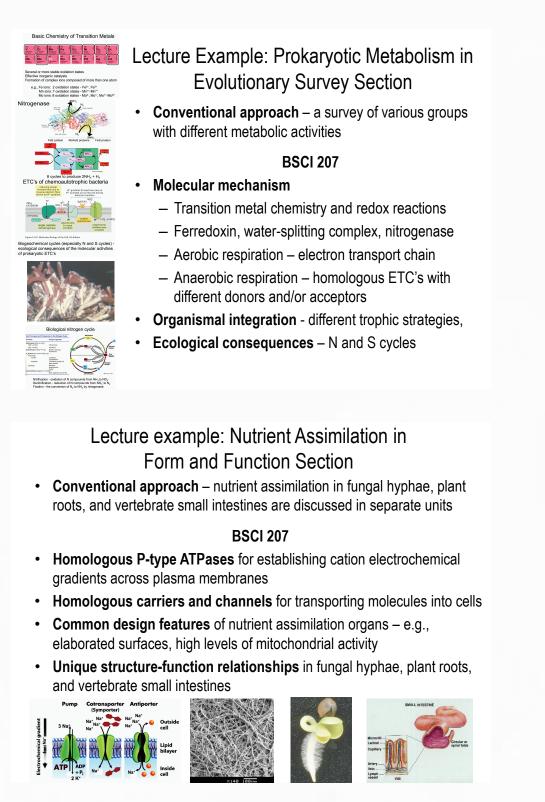
Challenge: Create an effective principles-based course on the structure, function, and diversity of organisms.

The traditional approach toward introductory organismal biology (OrgBio) is often derided as "the forced march through the phyla," because it involves teaching all the major groups of bacteria, archaea, protists, plants, fungi, and animals, plus separate units on plant and animal function. In our experience, students do not easily identify the fundamental principles governing all organisms from the tsunami of lineage-specific knowledge presented in the traditional course.

Content reform of Org Bio

UMD faculty teaching different diversity and physiology classes attempted to identify the overarching principles governing all organisms. The following consensus priniples were used to create the new course -- Principles of Biology III: Organismal Biology.

Principles of Org Bio


- 1. Universal physical and chemical principles
- 2. Deep molecular homology
- 3. Divergent structure-function relationships
- 4. Convergence
- 5. Lateral gene transfer
- 6. Symbiosis
- 7. Environmental transformation

Funding: NSF DUE 09-19816, HHMI

Lecturing the Principles

When we lectured, we found:

1) High levels of faculty satisfaction.

a biology class?" biomechanics.

Lectures alone were not effective at conveying fundamental principles!

Expected outcomes of CCLI grant

1) The creation of effective small-group active- engagement exercises (GAEs) for helping the students to learn and apply organismal principles; 2) The initial characterization of how biology students learn physical

principles in an introductory biology class

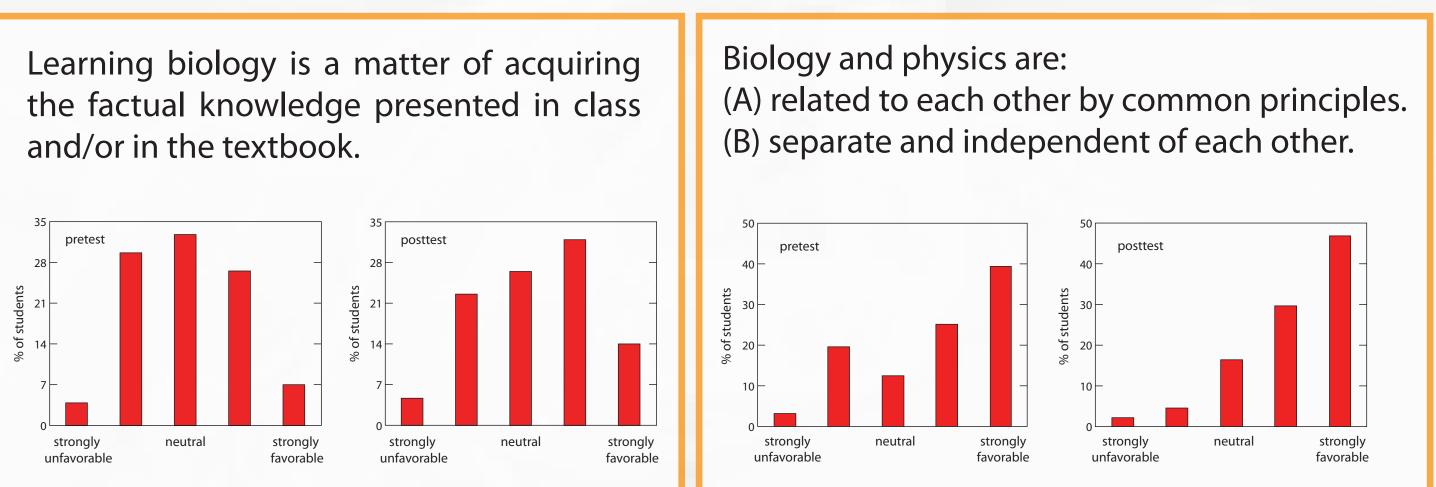
Principle	Model	Major activities (in addition to small-group brainstorming and class discussion in all exercises)	Estimated time (min)
Thermodynamics	Biological energy flow	Flow diagram construction	75
Descent from common ancestors	Phylogenetic trees	Tree thinking	50
Oxidation-reduction	Electron transport chain	Student enactment	50
Endosymbiosis	Pipe cleaner cell models	Guided manipulations	50
Diffusion	Fick's First and Second Laws	Computer simulations	50
Eukaryotic sex	Life cycle	Concept mapping	25
Scaling	Area/volume relationships; power laws	Class demonstrations/ mathematical manipulations	50
Organismal form and function	Model organismal design	Class demonstrations	50
Circulation	Hagen-Poiseuille equation	Discussions	50
Transmembrane transport	Homologous transport proteins	Student enactment	50
Biomechanics	Levers and lever equations	Class demonstrations/ guided experiments	50

Todd J. Cooke

Jeffrey Jensen

Janet Coffey

- 2) Students "revert to wild-type": short-term memorization and limited deep learning, i.e., the students manifested limited ability to describe, understand, and apply fundamental principles.
- 3) "Why are they trying to teach us physics in
- Students had problems with physical and chemical principles, such as thermodynamics, transport processes, oxidationreduction, scaling, material properties, and



Org Bio transformation

- Replace 1/3 of lecture periods with GAEs - Small groups of 3-4 in large class of 80 - Focus GAEs on major principles that are not well-conveyed by lectures, as judged from essay answers on previous exams - Encourage students to use prior biological knowledge to generate quantitative, physical, or conceptual models of these principles
- toward solving new problems
- the problems independently of each other.

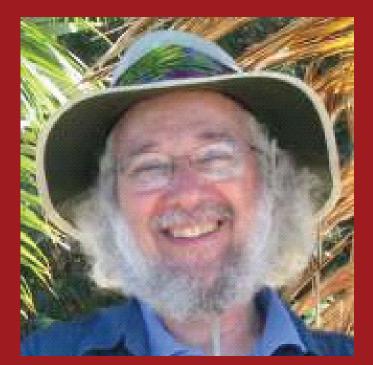
Preliminary assessments

Students completed a pre- and post-survey on their expectations about biology (Maryland Biology Expectations Survey). While we do not see much change in the unreformed courses, the results from the first semester of the reformed course are more encouraging.

Student evaluations have also shown an increase in student engagement and satisfaction. (average scores on 1-5 scale)

The instructor helped create mosphere that kept me end the course.

Overall, this instructor was fective teacher.


[In AP biology] we pretty much followed the way the text book was set up with the different chapters so it would be a chapter just on prokaryotes and then there'd be another chapter just on protists... But [in Org Bio] we've taken a lot of the background and principles and been able to connect them in a way that just flows so much better. - Jennifer, fa 2010

Jessica Watkins

Edward F. Redish

Create group homework exercises requiring the students to apply these principles

- Encourage students to discuss the homework problems outside of class, but write up

	sp 2008 lecture	sp 2009 clickers	sp 2010 GAEs
te an at- gaged in	3.91	4.15	4.45
an ef-	4.22	4.36	4.49

expected web dissemination: March 2011

www.umdberg.pbworks.com

