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Ideal gas models for equilibrium osmotic pressure and
for nonequilibrium flow of solvent through an ideal semi-
permeable membrane are presented. These models can
easily be introduced in general physics courses for students
of the life sciences. The models are justified in Appendices,
which include o summary of the irreversible thermody-
nomics of flow through membranes. Some physiological
examples are presented, tncluding the Nernst equation and
Gibbs-Donnan equilibrium.

INTRODUCTION

Osmotic pressure is central to physiologic
processes in every living thing, yet it is not
currently a fashionable topic in introductory
physics courses. The result is that when a medical
or biology student later encounters the phe-
nomenon (for example, in physiology), he has no
clear picture of the process involved, unless he
has had a very good training in physical chemistry.
Instead of being shown how to relate osmotic
pressure in an ideal solution to whatever intuition
he has developed about partial pressures in ideal
gases, he is told that osmotic equilibrium oceurs
when “there is a balanecing of osmotic and hydro-
static forces,” or that the ‘“hydrostatic pressure
difference necessary to maintain the unequal
concentration of total dissolved particles in the
two solutions is equal and opposite to the osmotic
pressure.” While these statements are not in-
correct, they are based on an understanding of
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osmotic pressure in terms of a driving force which
is the gradient of a concentration-dependent
chemical potential, a concept with which the
student may have no experience.

The equations relating osmotic pressure to
solute concentration for a dilute solution and an
ideal membrane are analogous to those for an ideal
gas; in fact, the concept of partial pressure can be
applied to a dilute solution. For this reason semi-
permeable membranes can be discussed along
with ideal gases in the general physics course, to
make the concept of osmotic equilibrium easier
for our students to grasp in subsequent courses.
While a real system can become quite complicated,
this ideal model provides an initial understanding
on which these details can later be based. The ideal
gas model can also be used to consider the rate of
transport of solvent in a system not in equilib-
rium; until recently this has been an area of
disagreement among physiologists.

This paper discusses osmotic equilibrium and
nonequilibrium flow at an elementary level using
an ideal gas model. The justification for using such
a simple model is given in the Appendices:
Appendix I justifies the use of partial pressure in a
dilute solution, and Appendix II reviews the
irreversible thermodynamies of a semi-permeable
membrane. Some physiological examples are in-
cluded; these can be used in the physics course to
maintain student interest.

OSMOTIC EQUILIBRIUM

The basic phenomenon with which we are
dealing can be shown by a fairly simple lecture
demonstration. The apparatus is shown in Fig. 1.
A fine-bore tube is inserted through a one-hole
rubber stopper, which is placed in one end of a
cylinder of cellophane sausage casing; the other
end is closed by a solid stopper. (String is tied
around the cellophane to hold the stoppers in
place.) The cylinder is filled with a sucrose solution
colored with red ink for visibility. The eylinder is
then immersed in water, and during the lecture



hour the red liquid will rise several feet in the
capillary tubing.!

Let us try to understand this phenomenon by
considering a similar experiment with ideal gases.
(The justification for this model is given in
Appendix 1.) The situation we wish to consider is
shown in Fig. 2. A box is divided into two com-
partments of volume V; and V, by a membrane
which is permeable to gas atoms of species 4
but not to thosc of species B. If N molecules
(M moles) of species A are introduced into either
compartment, they will distribute themselves
throughout the total volume of the box V=
Vi+V,, with uniform concentration n=N/V
(c=M/V) and pressure Pis=Psy4, as though the
membrane were not there. Thus, since the mem-
brane is permeable to A, equilibrium exists when
the partial pressure of A is the same on both sides
of the membrane. When molecules of species B
are added to the first compartment they cannot
pass through the membrane, so the pressure on
that side is increased by the partial pressure of
species B

Pp=ngkT =cgRT.

Transferring this result to the sucrose experi-
ment, a solute concentration of ¢ moles (n mole-
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Fra. I. Demonstration of osmotic pressure.
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Fra. 2. Ideal gas A4 can pass through the membrane
separating the two compartments. Therefore Pis=Pa,.
The total pressure on the left exceeds that on the right by
the partial pressure Pg.

cules) per unit volume will cause a partial pres-
gure or osmotic pressure

r=nkT=cRT. (1)

Since RT at room temperature is 22.4 liter—
atm/mole, for a solvent concentration of 1
mole/liter, the osmotic pressure is 22.4 atm.
The total pressure at the surface of the liquid in
both the capillary and the outer container is
one atmosphere. If the partial pressure of the
sucrose inside the cylinder is #, the partial pressure
of water in the cylinder must be = less than that
outside. Thus, water will flow into the cylinder
until the rise of water in the capillary has in-
creased the total pressure in the cylinder by =.

The key to the ideal gas model discussed above
is that molecules of gas A distribute themselves
uniformly throughout both compartments, since
they can pass freely through the membrane.
Depending on the level of the course, this can be
taken as self evident, or it can be derived using
ideas from kinetic theory or thermodynamies. For
example, equilibrium of gas A will exist when the
number of molecules of A striking unit area of the
membrane in unit time from each side is equal.
This number is

1) av/d=n(kT/2zm) 12, (2)
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so equilibrium requires that, ny=mn, or, since
P=nkT, Py=P, Alternatively, from a thermo-
dynamic point of view, the classical entropy of an
ideal gas is

S=NEk[ogV+ (3/2) logT+const. ).  (3)

This will be greatest when the gas fills the box.

Physiologists often speak of concentration
work, the amount of work which must be done to
concentrate a solute. While it is not directly
related to osmotic pressure, it can also be dis-
cussed using the ideal gas model of a solution.
Suppose that the membrane in Fig. 2 is a piston
which is free to move. The excess pressure on
side 1 will cause the piston to move to the right
until compartment 1 occupies the entire volume.
If an adjustable extra force is exerted on the piston
so that it moves reversibly, the work done by the
excess pressure of the gas on side 1 against this
extra foree is

VetV MgRTAV
W= -[ et ikt
V1

VitV
- =MsRT log (—‘i—ﬂ)

Vi
(4)

It would be necessary to do this work on the gas
to move the piston back to its original position
and reconcentrate species B.

OSMOTIC FLOW

There has been considerable controversy among
physiologists about the nature of the flow which
occurs when equilibrium does not exist. It is well
known that the flow of solvent proceeds much
more rapidly than would be expected for diffusion
with the same concentration gradient,?? but the
explanation has been in dispute. The model of a
semi-permeable membrane often used is a mem-
brane pierced by pores which allow small solvent
molecules to pass but which block larger mole-
cules, such as proteins. Many workers in this field
seem to have felt that bulk flow could not occur in
small pores, though there is strong experimental
evidence that it does.?

1t does not seem to be widely recognized that
the interaction of the transported molecules with
other transported molecules so that they move
collectively causes solvent flow to be more rapid
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than the diffusion of a dilute solute. We can
make this distinetion clear in the general physics
course. An analogy to the problem at hand is well
known for the gaseous case: the distinction
between self-diffusion and hydrodynamic flow
in a tube. In each case there are many molecules,
so that the mean free path for collision with some
other molecule is much less than the tube radius.
In the first case, self diffusion, there is no net flow.
A few of the molecules are ‘“‘tagged” and are in
unequal concentration at either end of the tube.
This is analogous to the diffusion of ions or small
molecules through pores in a membrane. The net
number of tagged molecules per second moving to
the right through area wa? is given by*

dN/dt=—Tma*(dP/dx), (5)

where Ty= (v)sy\/3kT; T, represents a diffusion
coefficient in which the units on each side of the
equation differ. The rate of transport is propor-
tional to the area of the tube because the diffusing
molecules, though they frequently strike the other
molecules of the gas, are moving independently of
each other. The second case is viscous hydrody-
namic flow obeying Poiseuille’s law.’ Expressing
it in the present notation for a tube of radius a
and using the kinetic theory expression for the
viscosity of an ideal gas we have

AN /di=— (31a*/8m{v)a) (dP/dz).  (B)

Putting this in the same form as the previous
equation, we get Tn=(a/m{v)y)(3a/8\). The
ratio is (using (v)a.?=8kT/mm)

Ty/Ta=m(3a/8\). )

The hydrodynamic flow is much greater than
the diffusive flow, being proportional to the square
of the tube area, because all the molecules are
involved in the transport proecess. They undergo
frequent collisions with one another and move
collectively. In diffusion, the molecules having a
concentration gradient collide with one another
infrequently, although their mean free path for
collisions with water molecules is small. Appendix
II summarizes thermodynamic arguments which
show the similarity of osmotic and hydrostatic



pressure differences in causing bulk flow, as well
as the difference between bulk flow and diffusion.
A model for the liquid case is also presented.

BIOLOGICAL EXAMPLES

A few examples of situations in physiology
where osmosis 1s important are given in this
section, as a source for lecture examples or home-
work problems. While these are well known to
physiologists, they are not usually accessible to
physics teachers.

Swelling of a Cell in a Hyptonic Solution

Suppose that an ideal membrane which is
permeable to solvent A encloses a volume con-
taining both solvent A and solute B. Further
suppose that this apparatus is iramersed in a
bath of solvent 4. The pressure in the interior
volume will always be greater than the pressure
outside by an amount 7 =CzRT; the bath is said
to be hypotonic. The interior volume will expand
until the membrane bursts or provides sufficient
force to maintain the pressure difference. This is
seen in physiology: For example, red blood cells
placed in water will swell until they burst, because
the cell membrane is impermeable to many of its
counstituent molecules.t

Plasma Flow Through a Capillary Wall.

Osmotic pressure is important in the transfer of
oxygen from the blood to the cells of the body and
in the collection of carbon dioxide by the blood.
The transfer takes place as the blood fows through
capillaries, which are very fine (about the diame-
ter of a red cell). The blood cells move in plasma,
which consists of water, electrolytes, small
molecules such as glucose and dissolved oxygen,
and larger molecules, such as proteins. The wall
of the capillary is permeable to the water and
small molecules; these together we will ecall
“solvent.” Outside the capillaries is the interstitial
fluid which bathes the cells. Osmotic pressure is
responsible for the flow of solvent from the
capillary to the interstitial fluid at the arterial
end and back into the capillary at the venous end.
The flow is shown schematically in Fig. 3(a).
Typical pressures, relative to atmospheric, are
shown. The total pressure is P, and the osmotic
pressure is w. The partial pressure of the solvent is
therefore P— r. The total gauge pressure along the
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T1G. 3. Pressure relations along a capillary from the
arterial to the venous end. Pressures are in Torr. {a) Typi-
cal pressures at the end of a capillary. (b) Pressures along
capillary, assuming a constant gradient. When the parcial
pressure of the solvent is greater inside than outside, there
will be outward flow; in the converse case there will be in-
ward flow. (¢) Initial situation (before P, has increased) in
hypoproteinemia.

capillary drops from 30 Torr to 10 Torr because
of the viscous resistance to flow. The osmotic
pressure in the capillary is about 25 Torr because
of protein molecules which are too large to pass
through the pores in the capillary wall. The total
pressure in the interstitial fluid outside the capil-
lary is about 5 Torr above atmospheric because
of the elasticity of the tissues. (There is currently
some debate about the exact value.) There is
some protein in the interstitial fluid, giving an
osmotic pressure of about 10 Torr. The solvent
partial pressure P—r is plotted in Fig. 3(b).
In the first half of the capillary the flow is out-
ward; in the last half it is inward.

In several diseases, such as malnutrition,
intestinal or liver disease, the patient experiences
hypoproteinemia, a lowering of the concentration
of protein in the blood. Thus =; is reduced. If =,
were suddenly reduced by 5 Torr the curve for
P,—x; would be elevated, as shown in Fig. 3(c).
This would eause a net migration of fluid from the
capillary, which in turn would raise P, due to
tissue distension, until the amount of fluid
leaving the capillary was equal to that entering.
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Fra. 4. Distribution of species when a potential difference
exists across the membrane.

This accumulation of fluid outside the capillaries
between the cells is called edema. Edema can also
be caused by failure of the right side of the heart,
which causes P; on the venous side of the capillary
to rise. This also raises the partial pressure -of
solvent in the capillary compared to the partial
pressure outside.

Equilibrium with a Potential Energy Difference:
The Nernst Equation

In the considerations of an ideal gas above, we
have assumed that the concentration of the species
which ean pass through the membrane is the same
on both sides. This will not be true if the mole-
cules are charged and a potential difference exists
across the membrane. Concentrations will differ
by a Boltzmann factor because of the potential
energy difference. In physiology this is usually
written as the Nernst equation (F is the Faraday
and z the valence):

Vo—Vi=(RT/2F) log(n/ns)
= (RT/zF) log(ci/cz). (8)

There are several ways to derive this equation.
The most direct is to use the Boltzmann factor.
If that has not been discussed in the physics
course, one can use the analogy between the
electrical potential energy difference of an ion of
charge ze, which is ze(V.— V1), and the gravita-
tional potential energy difference of a molecule,
U;— Uy =mgh. The concentration of gas in the
atmosphere varies with height, even if the tem-
perature is constant, because of the variation of
potential energy. Macroscopic consideration of the
pressure on & volume of gas and the ideal gas equa-
tion can be used to obtain the barometer equa-
tion?:

Po/Pr=ns/ni=cy/er=exp[— (Us— Uy) /ET].  (9)
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Solving this equation for the potential difference
gives

U2~U1=’ﬂT log(cl/@). (10)

The potential energy difference in the electrical
case is

UQ—U1=ZG(V2—V1>- (11)
Then Eq. (10) becomes
Vo—Vi= (kT /ze) log(m/ns). (12)

Multiplying numerator and denominator on the
right by Avogadro’s number and introducing the
definition of the Faraday as charge per mole of
electrons completes the proof. One may also
derive Eq. (11) by considering the work neces-
sary to concentrate the gas. As the gas moves to a
region of lower potential energy, work is done on
it by the foree giving rise to the potential energy.
If the gas remains at the same temperature, this
work is just that required to make the gas more
concentrated [see Eq. (4)]. If the potential
energy of each molecule changes by U;— U, and
there are N molecules, the total energy change is
equal to the concentration work.

N(Uy—U1) =NET log(Vy/ V1)
(Ug-" Ul) =leog(n1/nz).

In the case of a liquid, this equation can be ob-
tained directly, but not at the level of an intro-
ductory course. We are dealing with diffusion or
Brownian motion of particles under the influence
of a constant external force. This is described by
the Smoluchowski equation,® which has Eq. (9)
as its steady state solution.

Gibbs-Donnan Equilibrium

A difference in concentration of charged ions
can be passively maintained across a membrane if
there is one charged species which cannot cross
the membrane. Such an equilibrium situation is
called Gibbs~Donnan equilibrium and provides
an example of applying the Nernst Equation.
Agsume that one has a positive ion (Na*) and
two anions, one of which can pass through the
membrane (Cl=) and one of which cannot
(A*"), as shown in Fig. 4. Usually A= is a protein



TapLe L. Gibbs-Donnan equilibrium of plasma and interstitial fluid.
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Plasma

Interstitial fluid

Protein concentration

Chloride concentration
Sodium concentration
Total ion concentration

1.0X 107% mole/liter 0
Protein charge —18¢

146.25X 107% mole/lifer
164 .25 X 107% mole/liter
311.5%X 1078 mole/liter

155X 107 mole/liter
155X 1073 mole/liter
310X 1073 mole/liter

Pressure excess in plasma 29 Torr
Potential of plasma with respect to interstitial
flyid ~1.5X103V

with a valence of about —18. Let the membrane
potential difference be Vo— V. If we let the chemi-
cal symbol in brackets represent the concentration
of each substance, we have, from the Nernst
equation or Eq. (9)

[NaJ/[NaJi=exp[—e(Va— V1) /KT
and

[CI/LC i =exple(V,—Vy) /ET ],

from which

(Nal/[Nali=[ClL/[ClL. (13)

Since the solution must be electrically neutral
(except for a thin layer of charge at each surface
of the membrane), we can write two additional
equations:

[(Nay=[Clhi+[z4]
[NaT=[ClD. (14)

These can be combined with Eq. (13) to determine
the wvarious concentrations and hence Vi—Vi.
It is then interesting to insert typical numbers for
the concentrations and membrane thickness to
determine the charge per unit area on the mem-
brane. Typical values® for a simplified model of
plasma and interstitial fluid are shown in Table I;
the temperature is assumed to be 310°K. The
difference in total concentrations of all species on
each side of the capillary wall can then be used in
Eqg. (1) to find the equilibrium pressure difference.
Assuming a membrane thickness of 3X10-7 m,

the electric field is 5000 V/m, which requires a
charge density of 4.5X 1078 C/m? on each side of
the membrane. This would correspond to an excess
charge on 1 out of every 10" atoms in a layer
3X 107" m thick.

CONCLUSION

The main features of osmotic pressure and
osmotic flow are the same whether one speaks of a
gas or a dilute solution. A discussion of equilib-
rium and nonequilibrium effects in the general
physics course can be helpful to students in the
life sciences. Some equilibrium examples from
physiology are given.
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APPENDIX 1. RELATION OF A DILUTE
SOLUTION TO AN IDEAL GAS

One may well wonder why the equation for an
ideal gas has any relevance to a dilute solution.
The discussion has been couched in these terms
for two reasons: (1) The expressions for the
energy, entropy, free energy, and partial pressure
of a dilute solution have the same dependence on
concentration as they do in an ideal gas; (2) the
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TasLE II. Comparison of thermodynamic quantities for an ideal gas with those for a dilute solution; N;=molecules of species

i, Mo=moles of solvent, and M ;=moles of solute.

Quantity Gas Dilute Solution
E; (3/2YN KT Me:(T)
S; Nis(T) =Nk log(Ny/V) Mis! (T) ~M R log(M;/Mo)
F; Nifi(T) +NET log(N/V) M:f(T)+M.RT log (M.:/M,)
G, Nigi(TY+NET log(N;/V) Mg/ (T)+M.RT log{M;/Ms)

derivation of the equations for the dilute solution
is too complicated for the general physics course.
The results of a careful discussion®® will be sum-
marized here.

Consider M, moles of solvent with total energy
(T, P), volume Vo(T, P), and entropy So(T, P).
Let there be M, moles of dissolved substance 4..
Then, if M.;/ML1 for all such substances, one
obtains expressions for the energy, E., entropy,
S: Helmholtz free energy, F., and Gibbs free
energy, G; which are compared to those for an
ideal gas'-1? in Table I1. To find the effect of the
solutes on the pressure in the solution, one uses
the fact that

P=(3F/8V)g, (15)

where F' is the Helmholtz free encrgy. Fermi
evaluates this derivative by letting the membrane
move to the right. He shows that the excess
pressure is given by

P=(RT/V)ZM;=3P,. (16)

This is the same result as in Eq. (1) for the ideal
gas. Since the total pressure is the pressure of the
solvent Py plus the sum of these osmotic pressures,
we may speak of the partial pressure of the solvent
and of each solute.

APPENDIX II. FLOW OF LIQUIDS THROUGH
MEMBRANES

The treatment given in terms of an ideal gas
model is of course only an idealization. The
thermodynamics for real fluids has been worked
out?® and will be summarized here. Suppose that
one has a pressure difference AP and an osmotic
pressure Am=RTAc, across a membrane, where
Acs is the concentration difference of solute in
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moles per unit volume. The velocity of the water
(solvent) across the membrane is v, and the
velocity of the solute is »,. One can write phe-
nomenological  relationships  between  these
variables, assuming small values of AP and A, so
that the relations are linear and introducing four
phenomenological coefficients, L. The correct
velocity variables turn out to be

meyrv+ <Cs >av (Vs >av?}s = LPAP_%—LPDA'K
Ve~V =LDPAP+LDA7F. (17)

The first equation represents the total volume flow
across the membrane; the second represents the
net motion of water and solute. Two other sym-
bols have been introduced in Eqs. (17). The first
(€s)ay, 18 the concentration (moles/liter of solu-
tion) of the solute averaged over both sides of the
membrane. The molar volume (V,),, is the
volume inerease of the solution when one mole of
solute 1s added. For an ideal solution 1t is nearly
the volume of one mole of solute. The product is
therefore the volume of solute per unit volume of
solution. It is usually very small, but in certain
cases it cannot be neglected. Requiring that the
entropy of the system not decrease leads to the
Onsager relations:

LPD = LDP
Lplp2 LppLep.
For an ideal membrane such as the one con-
sidered in the body of this paper, there can be
no flow of solute through the membrane: v, =0.

In that case one can show that Lp=Lp= —Lpp,
and both Eqs. (17) become

vy=Lp(AP— Ar).



If Ar=0 and there is a pressure difference, we see
that there will be a flow of water. If AP=0, a
difference in osmotic pressure (solute concentra-
tion) will cause a flow of water in the opposite
direction. There will be no flow of water when
AP = Ar.

In the non-ideal case, one can write Lpp=
Lpp=—0oLp, so that the three independent
parameters are Lp, o and Lp. The equations are
then

vw+ <Cs>a\?<vs>uvvs ZLP(AP‘—O'A’K)
ty—tu=oLpAP+LpAr. (18)

In this case, ne volume flow oceurs if AP=c¢Aw, a
hydrostatic pressure which is less than that cal-
culated in the ideal case. {Reference 13 shows that
o<1 and that ¢ may in fact be negative in special
cases.) To discuss flow of water or solute, it is
most convenient to ealculate the flux. The solute
flux, J, (moles/area—sec), will be given by the
molar conecentration times the veloeity: J,=
(€s)av(¥s)av. This can be obtained by adding
Eqgs. (17) and assuming that (¢, )a, (Ve <K1:

Ji={¢)wlp(l—a) AP+ c,(Lp—oLlp)Ar.  (19)

The water flux is {cu)av{Vy)av, which is ap-
proximately

Ju={Cuw)avlp (AP —aAx). (20)

[Actually, multiplying the first of Eqs. (18) by
(e }av shows that the left-hand side of Eq. (20)
should be Ju+4(Ve)av{cu)aw/s, which is propor-
tional to the total volume flux through the mem-
brane.*] If a hydrostatic pressure AP=q¢A7 is
applied, there will be no net, volume flow (which is
approximately no water flow); but there will be
diffusion:

Js=<cs>av(LD'_0'2LP)A7T. (21)

This is often written in terms of a new coefficient,
w, the coefficicnt of permeability at zero volume
fow:

f s=wAr,

w={¢s)av{Lp—a’Lp). (21a)

Osmotic Pressure in a Physics Course

The second of the Onsager relations assures that o
will be positive and that the solute will not
diffuse against the concentration gradient. The
statement above that essentially no water flow
oceurs when AP =g¢A7 is analogous to the state-
ment which was made for the gaseous model: a
species will have no osmotic flow if its partial
pressure is the same on both sides of the mem-
brane.

We are now in a position to understand the
noint of controversy. Physiologists were at one
time surprised that an osmotic pressure difference
causes a greater water flow than one would expect
for discussion of tagged water under the same
coneentration gradient.?? We can now show that
one would expect no simple relationship between
the two cases. The water flux for a given con-
centration difference (Ar=RTAc,) and no pres-
sure difference is

Jw = {Cy Yavo LpAT. (22)

The coeflicients Lp and o refer to a particular
combination of nonpermeant solute and mem-
brane. For diffusion of tagged water through the
membrane, one has a completely different set of
coefficients with tagged water being the solute.
If the membrane cannot distinguish between
tagged and untagged water, there can be no net
movement of solvent and solute under a pressure
gradient, so ¢=0. Then Egs. (19} and (20)
become

T VY av (e Yo = (e Yar Lp' AP
J = (¢ Yae L' AP+ (e VavLp' A, (23)

Primes have been added to emphasize that these
coefficients arc different from those for the case of
a nonpermeant solute. If there is no AP, we will
have zero volume flow but there will be diffusion
of tagged water:

J = (e Vawts’ = ¢ Lp' A =0’ Arr. (24)

This is clearly different from the flux of Eq. (22)
In order to obtain further details we must use a
model. The simplest is a series of 91 pores per unit

area through the membrane, whose radii, R, are
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large compared to molecular size. One then
assumes that the flow is laminar, so that
Poiseuille’s law can be applied. The volume of
water transported through a single pore in one
second will be wR!AP/8Axz, where 75 is the
viseosity of the water and Az the membrane
thickness. This is multiplied by (¢, )av to get the
flow in moles per second. For the 9T pores per unit
area, the total flow is

Jo = (Co)arlp AP = ({0 ) TwRY/8nAx) AP, (25)
from which
Lp=9nR*/SyAx. (26)

Note that Lp is independent of the solute con-
centration.

The simplest model of diffusion is somewhat
more difficult. It was first given by Einstein in his
papers on Brownian motion.®® These papers are
well worth reading, since osmosis, diffusion, and
Brownian motion are all intimately related. We
will consider diffusion through large pores in which
the solute is unimpeded, and for which ¢ is there-
fore zero, so that Eq. (24) applies. We will
further assume that the particles are spherical,
have radius r, and that the pores are large enough
so that we can neglect interactions of the particles
with the walls. Each sphere will experience a
force due to the surrounding water and a force
exerted by collisions with the other spheres.
Instead of considering the microscopic details, we
will consider only the average effects. We will
assume the force due to the surrounding water is
given by a viscous drag f=6mnrv on each sphere,
where v is the veloeity of the sphere relative to the
water. There will be a force exerted by other
spheres only if there is a concentration gradient.
To calculate this, imagine two planes perpen-
dicular to the axis of the cylindrical pore, at = and
at z+ Azx. The partial pressure of solute to the left
of the plane at = will exert a positively directed
force across the plane equal to #(z)nR* The net
force on the enclosed volume wR*Az is

— (wR?) (dn/dx) Az,
so that the force per unit volume due to the
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osmotic pressure gradient is — (dw/dx). This is
the force of solute molecules on other solute mote-
cules. To see this, imagine an infinitely thin
piston at x, which is free to move, and which is
completely permeable to water but impermeable
to the spheres. It will move along with the
spheres as they drift, experiencing a force due to
spheres on its left and transmitting that force to
spheres (not to water) on its right. If N, is
Avogadro’s number, there are {(c.)..Na solute
spheres per unit volume, and the force per sphere
is

- ( <cs>avNA)—1d’lT/d$.

The solute spheres acquire a terminal velocity
when this is balanced by viscous drag:

v=Am/{Cs)av N s OmyrAx.

If the membrane again has 91 pores per unit area,
the total flux will be

J = (MRL/6N aqrAz) Ar, (27)
from which
Lp = (NR2/ {cs)aybN anrAL). (28)

The ratio of hydrodynamic flow to self diffusion
through the pores when AP = Ar is then

g=Ju/J =3y ) NaTR2/4. (29)

If we use {¢,)sw=1/18 mole/cm?, and r=2X10"3
em, we have

g=Ju/J = (R/2.5X 10~ em)2. (30)

According to this, the hydrodynamic flow will be
100 times the diffusive flow for R=25X10"% em.
The ratio will increase as R?, as in the gaseous
model of Eq. (7). Of course, for pores this small,
the assumptions of the model are quite question-
able. Corrections to the model have been made by
Kedem and Katchalsky® and by Bean.' Bean
quotes experiments by Kauffman and Leonard!
on the diffusion of various sugars through cello-
phane. He applies a refined model to their data



and obtains pore diameters of 20-40 A; other
workers obtain 60-80 A for cellophane. A typical
value of g for cellophane is 80; on the other hand
there are membranes for which g =1. Bean reviews
the existing work on fine pores, where our assump-
tions break down, and concludes that there is
room for improvement.

t This cannot be made a quantitative experiment because
the cellophane is not perfectly impermeable to the sucrose;
after a time the liquid in the capillary will begin to fall. The
rate of the effect is enhanced by using a small bore capillary
and a large area of cellophane.
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