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The steady state elecirical behavior of a nerve subjected
to small signals provides an example of voltage attenuation
in a resistance ladder. If capacitive effects are included,
the merve 1s stmilar to o cable with capacitance but without
inductance. Discussion of the steady state problem is within
the scope of a noncalculus general physics course, and
students going info medicine or the life sciences would
benefit from such a treatment. This paper iniroduces
physics teachers to the basic properties of a nerve axon,
the networks analogous to it, and the regenerative changes
in the electrical properties of the nerve membrane which
accompany the propagation of the action potential. These
have been known to physiologists for over twenly years but
are rarely discussed tn physics courses.

INTRODUCTION

During the last two years I have been auditing
courses in the University of Minnesota Medical
School in order to learn what areas of physics are
most useful to medical students. I was somewhat
surprised in the first neurophysiology lecture to
hear the professor tell the students, “You will
remember the telegrapher’s equation from your
physies course.” Fortunately, I was able to resus-
citate and comfort my near neighbors. Although
this equation is seldom covered in today’s general
physies course, a discussion with or without cal-
culus is possible when circuits are being treated.
Such a discussion is unavailable in most physics
texts, although experiments on nerve conduction
are now done in some introductory physics labora-
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tories.l'2 This paper will review for physicists
some of the properties of nerves and will show
the form which both a noncalculus and a calculus
discussion of the analogous network might take.
It will then review the currently accepted modifi-
cations to this equation which allow it to describe
the regenerative action accompanying the propa-
gation of a nerve impulse.

PROPERTIES OF NERVES?

A nerve consists of many parallel, independent
signal paths made up of nerve cells. Each nerve
is capable of transmitting a signal in only one
direction; separate nerves carry signals to or
from the brain. Each nerve cell contains an input
end, a long conducting portion or axon, and an
output end. It is these ends, rather than the axon,
which give the nerve its unidirectional property.
The input end may be a transducer (stretch
receptor, temperature receptor, etc.) or a junc-
tion (synapse) with other nerve fibers. A thresh-
old mechanism is built into the input end. When
an input signal exceeding a certain level is re-
ceived, this mechanism causes the nerve to fire
and generate an impulse, of fixed size and dura-
tion, which travels along the axon. The axon is
a long tail on the nerve cell and transmits the
impulse without change of shape. The axon may
be more than a meter in length, extending in a
human, for example, from the brain to low in the
spinal cord, or from the spinal cord to a finger or
toe. Bundles of axons constitute what we usually
think of as a nerve. The far end of the axon
branches out into fine nerve endings, which appear
to be separated by a gap from the next nerve
cell or muscle cell which they drive. Transmission
of the signal across the gap is discussed below.

The long, cylindrical axon has properties similar
to those of an electric cable. Its diameter may
range from less than a micron up to 500u for the
giant axon of a squid; in humans the upper limit
is about, 20u. Pulses propagate along it with speeds
from 0.6 m/sec to 100 m/sec, depending, among
other things, on the diameter of the axon. The



TasiE I. Properties of typical axons.
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Property Nonmyelinated Myelinated
Axon radius, a 5X107%m 5X10¢ m
Resistivity of axoplasm, p; 0.5 9-m 0.50-m
Resistance per unit length of axoplasm, r;=p:/7a? 6.37X10° 2/m 6.37X10° Q/m
Thickness of membrane or myelin, ¢ 5X10° m 2000X1079 m
Dielectric constant, « 5.7 5.7
Capacitance per unit area, xep/? 1072 F/m?2 25X1075 F/m?
Capacitance per unit length, 2m«ea/t 3X1077 F/m 8X10™1° F/m
Resistivity of membrane or myelin, pn 5X107 O—m 5X107 -m
Resistance times length of membrane, p.t/27a 8000 0—m 3X106 Q-m
Conductivity per unit length of membrane, 2ra/pni 1.25X10* mho/m 3X 107" mho/m
Resting potential inside, V' —70 mV —70 mV
Electric field across membrane or myelin, V /2 1.4X107V/m 3.5X10¢ V/m
Charge per unit area, o =«eV /i 7X107* C/m? 1.75%107¢ C/m?
Number of univalent ions/unit area 4.4X10%/m? 1.1X10%/m?
Number of univalent ions/unit length 1.4X10%/m 3.4X108/m
Distance between nodes 2X103 m
Total capacitance between nodes 5X107° F
Capacitance of node 102 F
Resistance across myelin between nodes 1.5X10°
Resistance across node 50X10¢ @
Resistance along axon between nodes 12.7X108 @

core of the axon may be surrounded either by a
membrane of thickness about 7-10 nm (an un-
myelinated fiber) or by a much thicker sheath of
fatty material (myelin), wound on like electrical
tape. A myelinated fiber has its fatty sheath
interrupted at intervals of about a millimeter
and replaced by a short segment of membrane
similar to that on an unmyelinated fiber. These

INSIDE OF AXON L EXTRACELLULAR FLUID
-t
Co/C;
[No*] = 15 [Na*] =145 9.7
[k*] =150 [k*] =5 .03
[misc*]=5
[cr]=9o [ci] =tes 13.9
[misc™] =156 [misc™]=30 2
V=-70 mv V=0

F1a. 1. Ion concentrations in & typical mammalian nerve
and in the extracellular fluid surrounding the nerve. Con-
centrations are in millimoles/liter. C,/C; is the ratio of con-
centrations.

interruptions in the myelin sheath are called the
nodes of Ranvier. The axon may be detached from
the remainder of the cell, but it will still conduct
impulses. Its conduction properties depend on the
membrane; the interior protoplasm (axoplasm)
has in fact been squeezed out of squid giant
axons and replaced by an electrolyte solution
without altering appreciably the propagation of
the impulses. (However, the axoplasm contains
elements essential to the long-term metabolic re-
quirements of the cell. A discussion of these or of
the Schwann cells which surround each axon must
be left to the physiology literature.*) Comparison
of the axoplasm with the interstitial fluid sur-
rounding the cells shows an excess of potassium
ions and a deficit of sodium and chloride ions, as
shown in Fig. 1. Table I shows values for the
resistance of the axoplasm and the resistance and
capacitance of the membrane or myelin sheath,
These are typical values, drawn from Refs, 3
and 4, and should not be identified with a specific
species. The resistivity of the membrane is about
10® times that of the axoplasm. Also shown in
Table I are values for resistance and capacitance
at and between the nodes of Ranvier for a typical
myelinated fiber.®
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Fie. 2. A typical nerve impulse, also called the action
potential, viewed at one position on the axon as a function
of time.

The Nernst equation® can be used to determine
whether, for the existing potential of —70 mV
inside the cell, any of the ion species are near
equilibrium. For a temperature of 310°K, the
equilibrium ration C,/C; would be 0.07 for uni-
valent positive ions and 13.7 for univalent
negative ions. If the ions were free to equili-
brate under these circumstances, sodium would
move in, potassium would move out, chlo-
ride would already be in equilibrium, and the
miscellaneous anions would move out. How-
ever, most of these miscellaneous anions in the
axoplasm are large protein molecules which can-
not penetrate the membrane. An interior poten-
tial of —90 mV would just support the observed
concentration difference of potassium ions but
would cause sodium. ions to move further from
equilibrium. Tracer studies show that potassium
leaks out and sodium leaks in slowly, but that
this is balanced by a process in which energy
is expended to pump sodium back out and potas-
sium back in.7 If the permeability of the mem-
brane to sodium were suddenly to increase, so-
ditm would enter because of the concentration
gradient, raising the interior potential. It is this
process which appears to be responsible for the
generation of the nerve impulse (action potential) ;
the rising interior potential is accompanied by a
further inecrease in the sodium permeability.

A typical impulse is shown in Fig. 2. The
potential inside the axon rises abruptly, then falis
towards —90 mV, and then slowly recovers to
~—70 mV. The membrane is said to depolarize
and then to repolarize. The regenerative action
which creates this pulse is due to the changing
permeability of the membrane for sodium and
potassium ions as the voltage changes. This will
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be discussed below in the section on Hodgkin—
Huxley theory; the next section will discuss the
response of the membrane to smaller signals for
which changes in permeability can be neglected.
We now turn to the question of what happens
at the end of the nerve fiber, where the signal
must pass on to a muscle or to another nerve
across a junction called a synapse: Is the trans-
mission eleetrical or chemical?® There are gaps
of 1020 nm between presynaptic and postsynap-
tic nerve cells, and 50-100 nm at a neuromuscular
junction. There are instances, such as in the
heart, in which the transmission appears to be
electrical®; yet in many cases chemicals are the
carrier. Katz® provides convincing evidence of
the chemical nature of the transmission at the
usual neuromuscular junction, including a calcu-
lation of the small size of any electrical effect
present. At most vertebrate neuromuscular june-~
tions, the nerve impulse is followed by an elec-
trical pulse which propagates throughout the
muscle fiber and initiates contraction. There is
good experimental evidence that in this case the
chemical acetylcholine is released by the nerve
endings when the nerve fires. The acetylcholine
increases the permeability of the nearby muscle
membrane to sodium, allowing sodium to leak in
so that the muscle depolarizes. This process is
quantized: packets of acetylcholine of definite
size are liberated. This provides an excellent
example of the Poisson distribution which can
be discussed in class.’® Other chemical mediators
are important elsewhere in the nervous system.
Now consider the input end of a nerve cell.
The response of a nerve to chemical packets from
a synapse with a preceding nerve is a change of
membrane permeability which increases the in-
terior potential. If the potential becomes high
enough, the regenerative action of the membrane
takes over and the nerve fires.’? If the input por-
tion of the cell is acting as a transducer, the
interior potential rises as the transducer is stimu-
lated. If the input is from another nerve or nerves
at a synapse, a signal from a preceding nerve may
cause it to fire, or the signal may cause a sub-
threshold increase or decrease of the internal
potential. In this way, two or more input signals
may be required simultaneously for the nerve to
fire, or one input signal may inhibit the effect of
another. This makes possible the Boolean network



of which the central nervous system is believed
to consist.!?

SMALL ELECTRICAL DISTURBANCES:
ELECTROTONTUS

The propagation of an electrical signal in an
axon is similar to the propagation of a signal in
a cable, as long as variation of membrane resist-
ance with voltage can be neglected. This similar-
ity was noted by workers in the field in the last
century.* Physiologists call this small-signal
spread of a change in potential along the axon
electrotonus.

Consider charge flowing from the axoplasm to
the inner wall of the membrane. There will be
two components to the current, one charging the
membrane capacitance, the other passing through
the membrane:

i=C(dv/dt) + G,

where G is the membrane conductance. Now
assume that for a length of axon dz, the resist-
ance along the axoplasm is R;=r.dz, the exterior
resistance is Ryo=r¢dz, and the capacitance and
conductance of the membrane are C,=c.dzr and
Gun=1/R,=dz/rm, respectively. Voltages, v, are
measured as departures from the resting value
(—70 mv). In the resting state, z must be zero.
Then the axon has the equivalent circuit shown
in Fig. 3.

The simplest approximation to this is an infi-
nite resistive ladder network. Since this ignores
capacitive effects, it can show only the spatial
dependence of a steady-state signal, but it is

X
-
i|_(—;) ij(x+dx)

V(x)r I/GJ~C Vix+dx | I/GJ-‘C.

RO RD RO
-— —
iglx) ig{x+dx)

F1a. 3. Resistance—capacitance model for a segment of
axon of length dz. R; is the resistance inside the axon; R,
is the resistance outside; G and C are the conductance and
capacitance of the membrane. The departure of the trans-
membrane potential from equilibrium is ».
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Fr1a. 4. (a) Approximation to the network of Fig. 3 with
capacitance ignored. (b) Consideration of the circuit
elements between points ¢ and b, with the infinite network
to the right of b replaced by a single resistance .

easily within the scope of a noncalculus physics
course. Such a ladder is shown in Fig. 4(a). Find-
ing the relation between v, and v; can be consider-
ably simplified by using the following trick. Cut
the ladder at point b. Everything to the right of
this point hag resistance B. Then cut the ladder
at @ and replace everything to the right by the
network shown in Fig. 4(b). Since the ladder is
infinite, this must also have resistance R. Hence,

R=(Ro+R:)+ER./(R+Ry). (1)

This may be solved for R:

2R = (Ro+R:) +[(Ro+R:)*+4(Ro+Ri) B ]2
(2)
(Only the positive square root gives a positive

value for R.) The ratio v;/v, may be obtained
from the circuit of Fig. 4(b):

Va Va
_ —_ . 3
%= FRet Ry (BB BRIFL 148 O
Then one can write
Av=0—0,= —B80,/ (1+8). (4a)
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V{X}/V(0)

V(X,1)/V{(0,@)

VIX,t)/V(0,©)

(c]

F1G. 5. (a) The voltage along the axon when v=v, at x=0.
This is the solution of Eq. (4b), for which capacitance has
been neglected. (b) The voltage along the axon at different
times after the application of a constant current at z=0.
For t=  this is identical to (a). (¢) Voltage at a fixed
point on the axon as a function of time, for the same
excitation as in (b).

The voltage change between rungs of the ladder
is thus proportional to the voltage across a rung,
and the voltage decays exponentially®® down the
ladder. If 8«1, then Eq. (4) takes the form

Av= —gv. (4b)

To apply this model to the unmyelinated axon
of Table I, take

R()NRI' =7 A= 637)( IOQACI:,
R,.,=rn/Az=8000/Az.

Then, from Eq. (2) we obtain
R= TiA$+D‘i2AZII2+ (27'iAx) (Tm/Ax) ]”2-
As z—0, this gives R= (2ryi»)V% From Eq. (3),
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taking the same limit, we get 8= (2r;/r.)?Ax=
1200Az. This means that if the voltage at some
point is held at vy, the voltage to the right will
decay exponentially:

v(z) =voexp(—a/N), (5)
where the decay length or space constant, A=
(2r:/1w) 12, is 0.8 mm. By symmetry, the voltage
will decay in the same way to the left of that
point. If the voltage at £=0 is held at vy, while
it is zero at &+ «, the voltage will be as plotted
in Fig. 5.

To consider the temporal behavior of small
signals, we must include the capacitance of the
membrane. The simplest model which does this
is that of Fig. 3, for which we can write the
following equations:

1:(z, £) = Gut(z, t) +C n(dv/0t) +1;(x4-dx, t), (6a)
v(z, t) =v(z+dx, t) + Ri:(z+dx, t)
+Rolo(x+dzx, t). (6b)

The symmetry of the ladder requires that 7;=1,.
If we call these currents 7, we obtain from Egs.
(6) the equations

w/or=— (ri+710)7,
31/3x= —v/rmn—cn(0v/0t).

(7a)
(7b)

These can be combined to give
(0%/07%) — (ri470) (v/1m) = (ri+10) cm (80/81) =0,

or
A2(0%/0x?) —v—7(dv/at) =0, (8)
where A=[rn/ (ri+70) J/? and 7 =rmcm. This is the
homogeneous equation in the absence of external
stimulation. The inhomogeneous equation has
been considered in detail by Davis and Lorente
de N6, and by Hodgkin and Rushton!; their
work is summarized by Plonsey.®
This equation was once familiar to physicists
as the differential cquation for a submarine cable
with negligible inductance per unit length!®; hence
the name telegrapher’s equation. It can be trans-
formed into the heat conduction equation by the



substitution »=wue~*7. When there is no time
dependence, the equation reduces to Eq. (4). If
the potential is made uniform along the axon
(as with a fine wire inserted longitudinally), the
voltage changes exponentially with time constant
7. The general solution is discussed in the refer-
ences. The exact analytic form will not be re-
peated here, but the behavior of »(z) at various
times after an excitation is applied is shown in
Fig. 5(b). The solution shown there is for a
constant current injected at x=0 for all positive
time. For =, the curve is identical to that for
the earlier model, as the cable capacitance is
charged and only the membrane leakage current
attenuates the signal. For earlier times the shape
is not quite exponential (the solution involves
error functions). The rise of the voltage at fixed
positions along the cable is shown in Fig. 5(¢),
which displays both the finite propagation time
and the spatial attenuation of the signal.

More complicated models for the membrane
with two time constants have also been used and
are discussed in the references.

PROPAGATION OF THE ACTION POTENTIAL:
HODGKIN-HUXLEY THEORY

Considerable work on this problem was done
in the late 1940s, culminating in a set of equations
relating impulse propagation to permeability
changes measured in other experiments, which
were presented by Hodgkin and Huxley in 1952.20
Most of the experiments were earried out on the
giant axon from the squid, which provides a
single axon several centimeters long and 0.5 mm
or more in diameter. The removal of the axo-
plasm from this preparation and its replacement
by electrolytes had shown that the critical phe-
nomena take place in the membrane. We will not
review all the experiments which were done; the
important ones are discussed in Refs. 3 and 18.
We will mention only one type that is particularly
illuminating. These were voltage clamp experi-
ments which were reported by several workers in
1949.2* Two long electrodes were inserted in the
axon. One, paired with an electrode in the sur-
rounding medium, sampled the potential across
the membrane. The other injected whatever cur-
rent was necessary to keep the membrane poten-
tial constant. If the membrane potential was
abruptly increased from the resting value, the
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Fia. 6. Sodium and potassium conductivity as a function
of time, for squid giant axon at 6°C subjected to a voltage
step AV =26 mv at t=0. The values are calculated from the
equations in Ref. 20.

resulting current was found to have three com-
ponents: (1) a current lasting a few usec which
changed the surface charge on the membrane
(i.e., charged the membrane capacitance); (2) an
inward current which lasted for 1 or 2 msec
(various experiments showed that this was due
to the inward flow of sodium ions; if the mem-
brane potential were not clamped, of course, this
flow would raise the potential further); (3) an
outward current which rose for about 4 msee and
which then remained steady for as long as the
voltage was maintained at this value (tracer
studies proved this to be due to a flow of potas-
stum).

Hodgkin and Huxley used these results to de-
fine sodium and potassium conductivities. For
example, the sodium conductivity, gnsa, 18 defined
in terms of the sodium current density, jna., the
transmembrane potential, V, and the sodium
Nernst potential, Vxa, by the equation

Ina=(V—=Vxa)gna. 9)
A similar equation is written for the potassium
conductivity. The conductivity at any time is a
function of both the potential at that instant and
its past history, so the definition is quite arbi-
trary. Nonetheless, it is useful to extract the
term (V—Vwy,.), because we expect the sodium
current to be zero when V= Vy, since the ions
inside and outside will then be in equilibrium.
Factoring this term eliminates the need for gna to
beeome zero when V= Vy,.

Hodgkin and Huxley found that if a voltage
step was applied, the sodium and potassium cur-
rents behaved as shown in Fig. 6. The behavior
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of the potassium conductivity is similar to gg(f) =
gr(1—e~7), except that it has zero slope near
t=0, while (1—e¥7) rises linearly from zero
(§x i3 the maximum potassium conductance).
They chose to fit the conductivity by raising this
expression to the fourth power. That is, they
wrote
g ={Jrnt,

dn/dt=an(1—n) —Ban. (10)

The functions «, and B8, are empirical functions
of V.2 It is postulated that a changing voltage
affects gx only through the behavior of this dif-
ferential equation for n. For constant values of
Oy By a0d 1(0) =0, n=n,(1—e ),

The sodium conductivity is described by

gNa:m3h§Na)
dm/dt= o, (1—m) —Bum,

dh/dt= o, (1—h) —Byh. (11)
In this case, the growth of m desecribes the in-
crease in sodium conductance, while a decrease
of h describes its subsequent decay. Typical be-
havior of the conductivities for a voltage step is
shown in Fig. 6. Although the authors give some
arguments to justify the form of Eqs. (10) and
(11), the equations must be regarded as phenom-
enological fits to the time-dependent permeabil-
ities in response to a sequence of voltage steps.
Alternative descriptions of the conductivity have
been given which also fit the data but which
suggest a different microscopic interpretation.?

The question we wish to consider here is whether
this description, which describes the voltage clamp
experiments well, is also consistent with the ob-
served shape of the propagated nerve impulse.
For Guo(z, t) in Eq. (6a), Hodgkin and Huxley
substituted the following term:

G = 2mada en*(V — Vi) +Gxam®h (V—Vya,)

+a(V-Vy)1 (12)

The last term is a leakage term representing the
migration of other ions. The leakage conductivity
(0.3 mmho/em?) is smaller than the others; V; is
set so that the total current is zero in a resting
membrane. Note that we have switched to the
membrane potential V, instead of v=V 470 mV,
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which was used earlier. This shift has no effect
on the derivatives. With this substitution, Eq.
(7b) becomes

67’/61: = —zraEGKn‘i(V_' VK) +gNa.m3h (V'— VNa)
+3:(V—V1) J—ca(8V/dt).

If this is combined with Eq. (7a), one has

(retr0) ~1(32V /83a2)
=¢n(0V/0t) +2ralGxnt(V—Vk)

+gnam®h (V—Vxa)+5:(V=-V)] (13)
Hodgkin and Huxley observed that the signal
propagated without change of shape,

V=V(z—ut),
8o that
PV /9x?=(1/u?) 9%V /ot

This is inserted in Eq. (13) to give

[2rxau?(rit-re) T1(82V /682)
= (cn/2ma) (8V/8t) +-gxn*(V~Vk)

+inam*h(V=Vxo) +5(V~V3). (14)
The quantity c./27a is the membrane capaci-
tance per unit area, «e/t of Table I. If we assume
19&r;, we can identify r;=p;/wra? and write the
constant on the left side of Eq. (14) as a/2p.u2.
Hodgkin and Huxley solved this equation by
guessing a value for » and numerically integrat-
ing Eqs. (10), (11), and (14) from the foot of an
action potential obtained by solving Eq. (8).
The conduction velocity was an eigenvalue: For
incorrect values of u, V(¢) diverged. For one
value, in fairly good agreement with experiment,
a pulse like that in Fig. 2 was reproduced. The
experimental shape of the action potential was
reproduced well, showing that the action poten-
tial is completely consistent with the conductance
changes observed in the voltage clamp experi-
ments. The more difficult question, asking what
model for the membrane can explain these con-
ductivity changes, is still being actively pursued.?

In the case of a myelinated fiber, the extra
layer decreases both ¢, and ¢, the mechanism
of Eq. (8) allowing the signal to propagate more



rapidly and with less attenuation. At the nodes
of Ranvier, the regenerative process reshapes the
impulse. This process has been calculated in de-
tail by a method analogous to the Hodgkin-
Huxley equation.?

An anesthetic which is injected to block signals
travelling along a nerve does so by preventing
the membrane permeability from increasing. Thus,
no regenerative restoration of the signal takes
place, and the signal decays exponentially. The
nerve must be blocked for several space con-
stants, A, to assure that the signal cannot get
through.?

CONCLUSION

An introduction to nerve conduection for physi-
cists has becn presented. A time-independent
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network model of the nerve is given, suitable for
the introductory physics course. A model includ-
ing membrane capacitance which leads to the
telegrapher’s equation is also shown. The regen-
erative propagation of the signal due to changes
of membrane permeability, which was first de-
scribed quantitatively by Hodgkin and Huxley,
is also reviewed.
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