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Abstract Modeling, like inquiry more generally, is not a single method, but rather a

complex suite of strategies. Philosophers of biology, citing the diverse aims, interests, and

disciplinary cultures of biologists, argue that modeling is best understood in the context of

its epistemic aims and cognitive payoffs. In the science education literature, modeling has

been discussed in a variety of ways, but often without explicit reference to the diversity of

roles models play in scientific practice. We aim to expand and bring clarity to the myriad

uses of models in science by presenting a framework from philosopher of biology Jay

Odenbaugh that describes five pragmatic strategies of model use in the biological sciences.

We then present illustrative examples of each of these roles from an empirical study of an

undergraduate biological modeling curriculum, which highlight how students used models

to help them frame their research question, explore ideas, and refine their conceptual

understanding in an educational setting. Our aim is to begin to explicate the definition of

modeling in science in a way that will allow educators and curriculum developers to make

informed choices about how and for what purpose modeling enters science classrooms.

1 Introduction

Modeling is increasingly understood as an integral component of authentic scientific

inquiry and, as a result, model-based curricula have been gaining traction in science

education reform (NRC 2007). However, modeling, like inquiry more broadly, is a com-

plex practice, which makes successfully translating modeling from the scientific com-

munity into science classrooms a significant challenge. One important element in

addressing this challenge is to develop a better understanding of the reasoning and deci-

sion-making strategies that accompany authentic scientific practice. There are relatively

few accounts of modeling in classrooms that do this in much detail. However, the phi-

losophy of science, and, in particular, the philosophy of biology literature, contains several
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useful treatments of modeling that are applicable to developing a deeper sense of this

practice in educational settings.

Historians and philosophers of science have documented and analyzed various ways

that modeling is done in the sciences and described a range of activities that may all fall

under the general heading of modeling. While there is some disagreement about how to

define them, there is general agreement that models are central to scientific practice (e.g.

Giere 1988; Morrison and Morgan 1999; Knuuttila 2005). However, because modeling is

really a diverse set of practices, we feel that it is important to get more specific about the

context and utility of models in science so that we can be more thoughtful about intro-

ducing science students to models and modeling. The diversity of uses for models is

particularly apparent in the biological sciences where model use varies with the aims,

interests, and disciplinary cultures of biologists. Detailed case-studies highlight how the

role of modeling can differ across disciplinary contexts (e.g. Darden 1991; Lloyd 1994;

Keller 2000) and have led philosophers of biology to challenge broad-brush accounts that

describe science as simply ‘‘model-based’’ and to consider in more detail the roles that

models play in scientific practice (Downes 1992; Godfrey-Smith 2006). The practice-

based, or naturalistic turn in the philosophy of science has focused specifically on the

activities rather than solely the products of science (Downes 1992, 142). In practice,

‘‘scientists use models to represent aspects of the world for various purposes’’ (Giere 2004,

p. 743). Scientific modeling, like scientific inquiry more generally, is not a single method,

but rather a complex suite of strategies. Models, of various forms and types can describe

complex phenomena, represent core ideas about a system, be manipulated to explore the

dynamics of a system, be used to make predictions about future events, suggest the need

for empirical studies, and facilitate the communication of ideas. Each of these activities

requires scientists to attend to different features of the model and make context-dependent

decisions about how best to use and evaluate these models. There are real cognitive and

epistemic differences in these different strategies of modeling.

We argue, in line with scholars such as Matthews (1994), that one of the main con-

tributions philosophers of science can make to science education is to help explicate the

diversity of strategies and motivations for model use in biology and science more broadly.

In this article, we draw on the work of scholars such as Gregory Cooper and Jay

Odenbaugh who have focused on uncovering epistemic aims and cognitive payoffs asso-

ciated with different scientific methodologies, and biological modeling in particular

(Cooper 2003; Odenbaugh 2005, 2009). Odenbaugh (2005) describes five important roles

of modeling in biological research. In the body of this paper, we present his framework and

then provide empirical examples drawn from an undergraduate biological modeling cur-

riculum that serve to instantiate these roles. The examples that we chose illustrate what

different modeling strategies can look like when enacted in an educational setting. In our

analysis we describe how each strategy can support the cognitive, metacognitive and

epistemic aims of science education. In sum, our primary aim is to begin to expand and

explicate the definition of modeling in science in a way that will allow educators and

curriculum developers to make informed choices about how and for what purpose mod-

eling enters science classrooms.

1.1 Modeling in Science Education

A growing literature provides documentation of the learning benefits associated with

engaging students in the practice of modeling. For example, researchers have shown that

when students engage in modeling they develop a deep understanding of the content and an
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ability to solve novel problems (e.g. Wynne et al. 2001; Lehrer and Schauble 2005). Other

studies have shown that modeling curricula can bring students into alignment with the

epistemic aims of science and help them develop more sophisticated ideas about of the

scientific enterprise (Schwarz and White 2005; Windschitl et al. 2008a). It is clear that

modeling has the potential to support meaningful reform efforts in scientific education.

However, as model-based curricula continue to proliferate, we argue for an increased need

to examine in more detail how modeling is practiced in science and how these practices

align with the aims of education.

We believe that, to a large extent, accounts of modeling in the science education

literature are underspecified with regard to the means and purposes of modeling and the

disciplinary variations that exist in this practice. For example, Schwarz et al. (2009,

pp. 635–636) state that they have purposely limited their analysis to a general account of

the practice of modeling and do not attempt to account for variations in modeling strat-

egies. In their work, models are defined as simple, abstract representations that can be used

to explain or predict. However, how the simplicity or abstractness of models might vary is

not addressed, nor are the different aims of explanation and prediction explored in much

detail. Other authors use ‘‘model’’ much more narrowly, as a simplified system that can be

used to explore a more complex system (a model system) (e.g. Lehrer et al. 2008), a well

established set of scientific ideas (consensus model) (e.g. Clement 2000); a representation

of empirical observation (models of data) (e.g. Chinn and Brewer), or a set of ideas that

explain some process or pattern (theoretical model) (e.g. White 1993). Collectively, these

studies illustrate the range of aims and uses of modeling, but the relevant differences

among them have not been made clear in the science education literature.

These different versions of models each have different meanings and uses and interface in

different ways with other scientific practices. While these studies are productive starting points

for introducing models into classrooms, we argue that without a clearer sense of the nature and

purpose of models and modeling in science, there is a danger that modeling could go the way of

more general calls for inquiry in science education, in which the meaning of the practice has

become so general and diffuse that it has lost utility. The practices of scientific inquiry have

often been enacted as over-simplified procedures that have provided limited opportunities for

sophisticated scientific reasoning and even promoted anti-authentic images of the nature of

science (Hodson 1996, 1998; Chinn and Malhotra 2002; Rudolph 2005). Like inquiry, for the

most part, modeling has been discussed in the science education literature without reference to

the different affordances and constraints of particular uses of models. If models are tools for

thinking, we ask, what kinds of thinking can they be used to support, and to what ends? Too

often, students are asked to consider what models are or how to go about modeling without a

clear understanding of why modeling is a productive endeavor. Here, we bring ideas about the

role of models from the philosophy of biology literature to bear on an analysis of a model-based

educational experience for undergraduates in biology in an attempt to unpack the variety of, and

relationships between, the cognitive strategies and epistemic aims that modeling has the

potential to support.

1.2 The Cognitive Strategies and Epistemic Aims of Modeling in Biology

It is widely recognized that within the biological sciences, and in science generally, models

are built for a range of different purposes and used in a variety of ways (Lloyd 1994; Smith

et al. 1997; Morrison and Morgan 1999; Keller 2000; Cooper 2003; Knuuttila 2005;

Nersessian 1999, 2002; Laubichler and Müller 2007; Odenbaugh 2009). In 2005, philos-

opher of biology Jay Odenbaugh introduced a framework that situates the practice of
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modeling as a collection of cognitive strategies that can be used to pursue particular aims

of scientific inquiry. Odenbaugh’s view emphasizes the pragmatic nature of modeling;

depending on the objective, the form and function of modeling will vary. Similarly, phi-

losopher Rom Harre describes how modeling strategies can vary both temporally (how far

along is the inquiry?) and epistemologically (what kind of knowledge is the researcher

after?). Attention to context is critically important in biology, a field that is dynamic, and

inhabited by a diversity of scientists with very different kinds of aims (conservation

biologists, biochemists, theoretical ecologists, computational genomicists etc.).

One way to parse this variation is to recognize, as ecologist and philosopher of science

Richard Levins did in his seminal work, The Strategy of Model Building in Population
Biology, that modelers face inherent epistemic trade-offs (Levins 1966). Levins argued that

for both cognitive and methodological reasons, modelers must often choose among the

desirable, but often conflicting, epistemic aims of realism, precision and generality. For

example, a fisheries biologist interested in population projections of a species of interest

might choose to sacrifice generality in order to construct a model that can generate accurate

predictions of population fluctuations; while, an ecologist, like Levins himself, might forgo

predictive precision in the interest of general explanatory power (ibid.). The main point to

take away from Levins’ argument is that modelers will and should build different models

depending on their particular aims. The implication is that there is not a single type of

model or modeling that can address all biological problems equally well; depending on the

question at hand, a biologist will want to choose the model that is the best tool for the job.

To some extent, differences in epistemic aims among biological disciplines will be

visible in the types of models used. Consider for example how modeling practices might

differ between molecular and evolutionary biologists. Philosophers Lindley Darden and

Evelyn Fox-Keller describe molecular biology as an enterprise whose aim is to elucidate

molecular mechanisms at a high degree of detail (Darden 1991, 2002; Keller 2000).

Darden describes how molecular biologists sought after the detailed series of steps that

now fully describe protein transcription (1991). Similarly, Keller describes how devel-

opmental biologists used models along with carefully crafted experiments to specify the

details of developmental pathways (2000). The aim of such scientists, says Darden, is to

‘‘fill in the gaps’’ in our understanding of the mechanisms at work at the molecular level

(Darden 2002, p. S363), an aim, using Levins’ terminology, that places a high value on

realism. In contrast, Elisabeth Lloyd describes the importance for evolutionary biologists

of relatively abstract mathematical models (1994). For example, population genetics

models typically sacrifice reality (by, for example, modeling single-locus dynamics) in

order to make generalizable predictions. These modelers have aimed for general explan-

atory power over detailed mechanistic descriptions.

One way to make sense of these differences is to recognize that different subfields

within biology constitute different epistemic cultures (Knorr-Cetina 1999). Such cultures

are not confined to traditional disciplinary boundaries, but instead refer to collections of

practitioners that use common machineries to achieve similar epistemic aims (ibid).

Importantly, these cultures can shift and evolve over time just as any cultural group would.

This point is important because it once again emphasizes the need to consider the nature of

modeling in context. The epistemic culture of molecular biology has shifted significantly in

the past few decades. Darden describes how early attempts to articulate molecular pro-

cesses of transcription and translation relied on abstract conceptual models compared to the

detailed mechanistic models that are common in contemporary molecular biology research

(2002). The utility of the notion of epistemic cultures is that it focuses on conversations

about scientific practice on the aims of the practitioners and how such aims might shift over
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time and space. An appreciation for the socio-historical context of a discipline helps us

understand why the detailed molecular pathway models are so different from theoretical

population genetic models.

Odenbaugh, drawing inspiration from Levins, has argued that it is important to clarify the

practice of modeling in terms of the cognitive benefits associated with different modeling

strategies and how they can serve particular epistemic aims (2005). To this end, and drawing on

the work of Levins (1966), Odenbaugh explores five major pragmatic uses for models in

biology and their associated benefits: (1) simple, unrealistic models help scientists explore

complex systems, (2), models can be used to explore unknown possibilities (3) models can lead

to the development of conceptual frameworks, (4) models can make accurate predictions, (5)

models can generate causal explanations. The focus of his argument, and a point we wish to

present to the science education community, is that the first three roles of models have been

underemphasized in comparison to the latter two. In addition to recognizing the role of models

as tools that scientists use to make accurate predictions and build complete and accurate

explanations of biological phenomena, it is important to recognize the ways in which models

can support theoretical progress even when, and perhaps because they do not capture all the

details of the system under study. Even when realism, precision, and generality are all fairly

low, when models are ‘‘false’’, there is still important intellectual progress to be made towards

‘‘truer theories’’ (i.e. Harre 1986; Wimsatt 1987, 2002).

1.2.1 Using Simple Models to Understand Complex Phenomena

That models are simplified in comparison to the phenomena they represent is well understood.

What is important is not simply that models are simplifications of reality, but that scientists

purposely construct simplified models in order to serve specific ends. That is, model building is

a subjective enterprise that reflects deliberate choices made by scientists about how much

reality to include. The result, as Odenbaugh alludes to, is that there exists a range of models

along a continuum from ridiculously simple to extremely complex. Neither approach is nec-

essarily better than that other, for, as Levins, argues, ‘‘the difference between legitimate and

illegitimate simplifications depends not only on the reality to be determined but also on the state

of the science’’ (1966, pp. 421–422). This view emphasizes simplification not as a limitation of

modeling, but as a deliberate and context-specific strategy.

Odenbaugh (2005) highlights several ways in which simplistic models can be produc-

tive tools for scientific reasoning. First, simple models can help scientists by allowing them

to begin to unpack the reasons why a false model is wrong (see also Wimsatt 1987).

Odenbaugh describes how a simple model can be compared to successively more complex

models as a strategy for locating error. False simple models can be extremely important in

guiding research and helping scientists formally describe what it is that they do not know.

As the complexity of a model grows it becomes increasingly difficult to localize causal

elements in the model. Increasing attention to detail can, somewhat counter-intuitively,

impede scientists’ ability to understand and explain how a system works. Starting with

simple models and building upon them is a deliberate strategy that can help structure, in a

systematic way, how scientists reason about complex biological phenomena. In particular,

this can be achieved by helping to isolate the most important components out of the

complexity. Thus one important feature of simple models is that they make reasoning

about complex systems possible, and in doing so they must forgo realism.1

1 Readers interested in an example from physics might want to consider Hughes’ (1999) description of the
Ising model, a model that is not faithful to reality but nevertheless has explanatory utility in physics.
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1.2.2 Models as Exploratory

Role two goes beyond the first to suggest that models can help scientists explore alternative

versions of reality. As Odenbaugh argues, part of the power of models lies in their ability to

support and structure possibilities rather than actualities (2005).2 That is, models can play

an important exploratory role in science. Constructing a model, Odenbaugh argues, helps

scientists organize and articulate their ideas about how a phenomenon might possibly

work. This is one of the most creative and generative forms of scientific reasoning

(Clement 1989; Nersessian 1992, 1999; Osbeck et al. 2010). The primary mode of rea-

soning during model construction is abductive: scientists draw on prior knowledge, reason

by comparison or by analogy, generate novel visual representations and engage in thought

experiments in an attempt to imagine which elements of a system may be critical and

ultimately construct and choose among plausible explanatory hypotheses (Magnani et al.

1999; Morrison and Morgan 1999; Nersessian 2008).

The exploratory nature of modeling is also evident in the way conjectural models are

analyzed. Once a modeler has made decisions about what to include in a model, he can

manipulate the model to explore ideas about what might possibly be expected to happen

over a range of different conditions. This kind of reasoning is particularly salient when

computers are used to run models forward in time, but the same effect can be achieved

(with less power) by thought experimentation (e.g. Hughes 1999; Nersessian 1999). In this

way, the model can support reasoning that extends beyond what is immediately observable

or measureable. This kind of exploratory analysis can help highlight areas of interest and

open new potential areas to investigation. In sum, models can be used to explore and

expand possibilities rather than simply as a way to rule out alternative hypotheses.

1.2.3 Using Modeling to Develop Concepts

While the first two roles focus on the model, this third role highlights the ways in which

modeling can generate new ideas that have the potential to transcend the model. In this role

the model is a tool that brings greater clarity to the nature of the phenomenon under study.

As Odenbaugh describes, this may occur during the process of model construction as the

modeler attempts to formally and clearly articulate ideas that were previously fuzzier. For

example, the notion of a species niche was first developed as a component of a competition

model and has subsequently become one of the most important ideas in biology (Cooper

2003, pp. 14–15).

Often opportunities for conceptual development take place during the process of for-

mally representing model ideas by choosing a particular representational form. This pro-

cess forces the modeler to make particular choices about how to represent model entities

and how exactly to specify model relationships (Hughes 1999). Formal representation can

often result in the generation of inscriptions that the modeler and others can interact with in

productive ways (Latour 1990). Concepts may also emerge during model analysis as the

model is manipulated and its behavior is characterized. For example, some parameters or

groups of parameters that were included in the initial model can emerge as important

enough to warrant naming them, and important conceptual work can occur in the trans-

lation of mathematical symbols back into biological concepts. Odenbaugh (2005) describes

how biologist Robert May (1973) chose to represent the overall number and degree of

2 See also Harre (1986) for his discussion of models that are used to explore ‘‘possibilities’’ and
‘‘impossibilities’’.
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interactions in an ecological community in terms of a ‘‘connectance’’ parameter C, which

he defined as the proportion of all pairwise species interactions that were not equal to zero.

May’s analysis suggested that C played a key role in the stability of the community over

time. While May’s model was later criticized, Odenbaugh describes how his attempt to

operationalize and interpret the role of C opened up a discussion in the ecological com-

munity surrounding the appropriate ways to conceptualize community complexity and

stability. This analysis marked the beginning of a proliferation of ideas in the ecological

community as well as a marked increase in experimental work in community ecology that

extended well beyond the original model.

1.2.4 Prediction and Explanation

We discuss the final two roles of modeling together, as does Odenbaugh, because they both

concern uses of models that require a higher degree of realism. In some contexts, the

ultimate test of the utility of a model is that it is able to make accurate predictions or

generate plausible explanations for data patterns. Odenbaugh does not debate the need for

models to speak to empirical data, and neither do we. We do, however, agree with

Odenbaugh’s argument that progress in science results from a dialogue between generating

new conjectures and, when possible, subjecting those conjectures to empirical testing.

Modeling is important in both of these contexts; models can direct empirical work by

generating testable predictions, and empirical testing can lend support to the hypotheses

generated by the model or identify gaps in our understanding that could benefit from a new

theoretical lens. It is worth noting however, that while they both rely to some extent on

matching empirical data, explanation and prediction are two different kinds of criteria for

evaluating a model. Explanation refers to the ability of a model to account, in sufficient

detail, for the underlying causal mechanisms that produce some observed outcome or

phenomenon (MDC 2000; Bechtel and Abrahamsen 2005). Prediction, in contrast, refers

only to a model’s ability to predict, with a high degree of accuracy, what, given some

specified initial conditions, will happen in the future.3 A disease model that can predict

how fast a disease will spread through a population, without specifying in any detail the

underlying mechanisms of such spread satisfies this aim, while a detailed account of the

molecular mechanisms that underlie circadian rhythms is an example of a model with high

explanatory power (Bechtel and Abrahamsen 2010). Over time and with iteration, a good

model will ideally be able to both explain and make accurate predictions. At this stage in

inquiry the model has transitioned from acting as a tool used to represent tentative ideas to

one that represents a well-supported consensus view of how some phenomenon really

works. Models of this sort have a different epistemic status—they represent the current

consensus about what is ‘‘known’’ and as such they play less of a role in supporting new

inquiries.

In sum, the essence of Odenbaugh’s argument is that matching reality is not the only

role for models in biology. We can still value models that are able to make predictions and

explanations without demanding that all models must do so. Odenbaugh wants to ensure

that the utility of the exploratory role of models in generating new ideas and new ways of

thinking is recognized as well. His aim is to argue for a plurality of uses for models, and

3 Prediction in this context is used to refer to the practice of predicting future events with some accuracy.
This is different from the reasoning strategy of imagining the implications if a given model were true, often
also referred to as the predictions of a model. This type of reasoning is more closely related to exploring
possibilities as discussed in Sect. 1.2.2.
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like Levins, to recognize that not all models need to be precise, realistic and general, but

that instead we should acknowledge that models can be used in different ways depending

on the goals of the modeler. An understanding that models are not blunt instruments but

rather a suite of tools that can be used to organize and conceptualize ideas, explore

possibilities, generate new questions, as well as serve as formal testable hypotheses, will

serve science educators well as they craft lessons to engage students in particular types of

reasoning.

2 Supporting the Plurality of Roles for Models in Science Education:
A Case Example

In the remainder of the paper, we present an account of model-based inquiry that features a

group of seven undergraduate mathematics and biology majors. These students were

participants in an NSF-sponsored traineeship called Collaborative Learning at the Interface

of Mathematics and Biology (CLIMB). The central focus of this traineeship was to

introduce students to the strategies of modeling in biology. During the first half of the year,

the CLIMB cohort worked with faculty from a range of biological disciplines to solve

different modeling problems. They then worked as a group to conduct their own research

project over the spring and summer. Throughout this project the group received advice

from a number of different scientists who guided them through the process of constructing

and analyzing a scientific model.

What was unique about this context is that we, as researchers, had the opportunity to

observe the ways in which scientists guided students in the context of a truly authentic

inquiry. What is evident from our analysis of what the faculty said and did, is that without

explicitly planning to do so, they helped support various uses of modeling for the CLIMB

students, and in the process supported a range of different kinds of scientific reasoning.

Below we use Odenbaugh’s five strategies to frame our presentation of illustrative

empirical examples that demonstrate how the CLIMB program supported the different

cognitive uses and epistemic aims of modeling to help the students make progress in their

inquiry. These examples are drawn from data collected during an ethnographic study of the

2008–2009 CLIMB cohort. In this analysis we draw on detailed field notes of student-

faculty meetings and transcripts of audio-recorded student presentations that were col-

lected over 5 months, from the beginning stages of project formulation in April 2009 to the

final presentation of results at the CLIMB conference in September 2009. In addition, we

draw on transcripts of audiotaped interviews with CLIMB students.

What is clear from these examples is that much of the productive reasoning took place

while students were using fairly simple, unrealistic models that did not match the ‘‘real’’

empirical data, and that despite or perhaps because of this, students were able to engage in

creative, generative modes of scientific reasoning.

2.1 Overview of the CLIMB Summer Project

The CLIMB cohort consisted of seven undergraduate students: five biology majors, one

mathematics major, and one physics major (who later switched to an independent major in

biophysics). The students consulted regularly with three scientists: Professor R, Professor

S, and Dr. Marcia. They also had the support of an advanced graduate student teaching

assistant (GTA), who had a background in mathematical modeling.
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The goal for the CLIMB summer project was to choose a research question in biology

that could be addressed using a mathematical model. The specific question was largely left

open to the students to choose. The group considered ideas related to the evolution of gene

regulation, altruism and cooperation, the role of macrophage proliferation in cancer

treatments and evolutionary models of phenotypic plasticity before they ultimately con-

verged on a project inspired by an article that described how media attention about a

possible link between autism and the measles, mumps, rubella (MMR) vaccine led to

reduced vaccination and recent disease outbreaks in countries that have voluntary vacci-

nation strategies.

What was especially interesting about this project was that the nature of the question

that the group was attempting to answer shifted continually throughout the 5-month

duration of their research. Even in the final days of their analysis, the group was still

refining their research question. As will be seen in the empirical examples below, these

shifts occurred for a variety of reasons: changing interests of the group, suggestions by

mentors, access to new information, and in response to emerging results obtained from

their modeling activities. In this way the students’ inquiry into vaccination-disease

dynamics reflected the idiosyncratic and often opportunistic nature of authentic inquiry.

The students never had a firm hypothesis that they were attempting to ‘‘prove’’ or ‘‘dis-

prove’’. Rather, the group was engaged in a creative and dynamic process of trying to make

sense of a complex phenomenon. Odenbaugh’s framework has allowed us to select

instances from this modeling experience that were particularly productive in terms of the

depth and diversity of reasoning strategies they supported.

2.2 Strategically Using Simple Models

The importance of working with a simplified model was emphasized by various CLIMB

mentors throughout the project, but for different reasons at different points. Early on, when

the CLIMB students were still trying to decide what kind of question they wanted to ask

about disease dynamics, the mentors encouraged them to first understand the simplest

possible model, the SIR model, which conceptualizes disease spread in terms of transitions

among three classes of individuals: those that are susceptible to infection (S), those that are

already infected (I) and those that have recovered (R). This exercise had two goals, to

familiarize the students with a basic starting point used by disease modelers and to present

to them the strategy of localizing gaps in current knowledge by examining the assumptions

made by the simplest model (field notes, May 8).

Professor R: What is the SIR model trying to predict?
Rose4: The dynamics of the disease.
Professor R: Exactly, and if SIR does not predict the disease dynamics then you know that either your
parameters are crappy or you left some important variable out of your model. Maybe there is
something important biologically that we are missing. So you add, subtract, whatever. You take
something as simple as SIR and you ask why it does or does not work.

This strategy then guided students in the construction of their own model. They spent

several days creating a list of possible factors that could influence disease dynamics that

were not present in the basic SIR model. Once the group had created a list of possible

factors, they were instructed to narrow their focus. The quote below from the graduate TA

4 All names are pseudonyms.
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echoes the advice from the faculty mentors about why the CLIMB students needed to keep

their model simple if they wanted to understand anything about the complex system

(transcribed audio, June 2, 2009).

GTA: So let me just ask you guys, because you are going over a couple things here: you are saying
voluntary vaccination, age structure, then you are talking about this information. You know, you have
all these things into one model. Those are quite a few things. You want to know which ones of these
things is actually doing anything. How are you going to be able to discern which one is having the
effects on it?

Here, the GTA explicitly articulated simplicity as a strategy for making conceptual

progress on their problem. Using this strategy would of course mean that they would be

leaving many elements of what is really happening biologically behind.

Later this strategy became more specific. The group began to more systematically

evaluate other disease models in order to decide whether they could be transferred to the

case of measles and MMR. They found, for example, a paper that described how the

dynamics of smallpox are influenced when vaccination is voluntary. This journal article

spurred a discussion about the extent to which the network structure of the smallpox model

was appropriate for a model of measles (field notes, May 22, 2009).

Kevin: I like the idea of adding a network thingy – a non-Poisson, small world network.
Sean: We could focus on changing the network structure.
Lillian: But measles is not a social contact disease.
Romy: Measles is airborne…transmissibility is high.
Professor S: Is that critical? The social interactions are in the network. The only difference is the
transmissibility constant, not the nature of the network.
Lillian: But smallpox has a smaller neighborhood. Less people get sick who you contact.
Professor S: Oh, I see, my measles network would be larger.
…
Rose: If we assume children are transmitting the disease – let’s face it, kids touch everything.

Several students, Sean and Kevin, are excited about the possibility of modeling disease

transmission using a network structure instead of the simpler random-mixing model. Three

other students, Lillian, Romy and Rose argue that in the case of measles a more complex

model of transmission is not justified. Given what they understand about measles (it is

airborne), as well as their intuitions (kids touch everything), these three group members are

able to convince the others that keeping disease transmission simple is a justifiable decision

for this particular disease and that the group should retain the random-mixing assumption

of the SIR model.

The above examples demonstrate two ways in which reasoning with simple models can

be an effective modeling strategy. First, the students had to consider to what extent the

simple SIR model was a relevant starting point for a model of measles spread, an example

of reasoning by localizing gaps in existing disease models. For the CLIMB students, the

SIR model was a set of ideas that they could build upon by asking themselves ‘‘what’s

missing’’ from this model. As the group explored increasingly complex models they

engaged in comparative analogical reasoning in which they made decisions about the

applicability of analogous disease models to their problem. Exercises such as these led to

productive brainstorming sessions in which students considered the possible factors that

might influence how diseases spread such as voluntary vaccination or adding different age

classes to the model.

Second, in the face of multiple factors, the group relied on simplicity to keep their

model cognitively tractable. Had they added all of their ideas into their model they would

have had a potentially more realistic model, but they would have limited power to explain

which of those factors were most important in the dynamics. Working with simple,
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unrealistic models helped the students productively constrain their inquiry by helping them

narrow a complex problem. The group decided that adding network structure to their model

would not be a relevant or useful model feature, and they justified their decision to treat

transmission as random mixing. Rose’s final comment provided an intuitive justification

for this decision. If transmission among children with measles is high, then random mixing

is a reasonable assumption. In discussions like these the CLIMB students knowingly

sacrificed reality for tractability, but also did so in ways that shaped their aim. The

exclusion of network structure meant that spatial dynamics was not part of the question

they wanted to ask about measles spread.

2.3 Using Models to Explore What is Possible

After spending several weeks reviewing and analyzing the literature, the group began to

explore their ideas more systematically. The CLIMB mentors asked the students to choose

among the many factors that they thought might be important in the human-measles system

and to justify those choices. Once again, the students were engaged in selective abduction.

To help them make these choices, the faculty regularly encouraged the students to employ

the strategy of thought-experiment; they asked the students to imagine what effect a

variable might have on the system. If they had reason to believe that it could significantly

influence disease dynamics, then it might be a variable worth exploring. In the excerpt

below the students were prompted to reason about how they might build age sensitivity

into their model (Field notes, June 30, 2009).

Professor R: You need to think about what you think is the biology. For example, the risk [of
vaccination] for a newborn may be higher. So you might reduce the likelihood of aversion [to
vaccination] as the kid gets older.
…
Then consider the age dependence of a kid encountering another kid who is infected. This might be
small for young kids, then increase, and that will be affected by prevalence.

Professor R asked the students to consider whether differences among different age classes

could possibly impact patterns of disease spread. He asked them to draw on their prior

knowledge of biology to decide whether adding age structure to the model is something

worth exploring. This same idea was echoed the next day by the graduate student TA, who

led the students through a consideration of how possibly various model components could

matter (field notes, July 1, 2009):

GTA: People have looked at immigration, age-structure, and seasonality.
If you are going to add voluntary vaccination, think about intuitively, is it going to change
something?
Lillian: It makes epidemics easier to spread?
Sean: It will depend on the age-dependent component of the vaccination very heavily, if people who
are older are more likely to volunteer to vaccinate.
GTA: Are you going to consider what you do if you are under 18?
Eve: I can’t figure out what would be the results.
GTA: It’s okay, you don’t have to come up with it right now; you just have to think about it.
Professor R: Here’s another way to think about it. What would I predict would happen that might be
interesting if I added this or this to existing models? How would it change the dynamics?

What is notable about the strategies described above is that it that they are not motivated by

the need to replicate reality; the students did not have data to suggest that transmission is

significantly different for different age classes. They were asked to speculate on whether

this model feature could possibly matter, and if so, could they imagine a plausible

mechanism of action.
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The CLIMB group decided that the two most important additions to the basic SIR model

would be to include age-structured dynamics and the influence of human learning and decision-

making on vaccination levels. Importantly, the latter decision was supported by the original

article that spurred their interest. This article gave them reason to believe that human behavior

could impact vaccination patterns, and hence disease spread in a significant way. The inclusion

of age-structure however, was ultimately included because other modelers had included it. The

students never really addressed Professor R’s suggestion to do the thought experiment. Instead

they relied on another modeler’s contention that age-structure was an important aspect to

include because it was able to generate the observed biennial dynamics. While this was a

reasonable decision, it impacted the group’s ability to make sense of their results because they

were unable to explore the question of how or even whether different aged populations influ-

enced disease spread in different ways.

Overall, this phase of model construction encouraged the CLIMB students to pursue a

number of different strategies for reasoning creatively about how human behavior and

human social organization might possibly influence disease dynamics. In making and

defending their model building choices, the group was engaged in a degree of intellectual

independence that is rare in school science even at the undergraduate level. The model that

the group built was both novel and grounded in biologically plausible mechanisms and

served as an important reasoning tool to structure the remainder of their inquiry. Never-

theless, the students did miss an opportunity to better understand the effects of age vari-

ation in their model. Instead of considering the possible mechanisms through which age

could influence infection and spread, the group simply included age-structure into their

model because it was more realistic.

2.4 Translating Mathematical Expressions into Biological Concepts

The process of generating formal inscriptions can create opportunities to both clarify and

refine model ideas. For the CLIMB students, formally articulating their mathematical

model and interpreting the results of their numerical analysis, afforded the students with

the opportunity to engage in more careful, more specific reasoning strategies. As the

students began to formally construct their model they were faced with the challenge of

operationalizing some of the ideas that they had decided were important in terms of

mathematical expressions. For example, the equation below was an early attempt at

defining how exactly different forms of human learning could impact vaccination rates:

dx=dt ¼ LSxð1� xÞ½xI� 1� þ LEð1� x=cÞ

This expression captures how the number of vaccinating individuals (x) changes over time

as a function of two forms of learning: learning from others in dyadic social interactions at

rate LS and learning directly from the environment at rate LE. It also includes parameters

that describe how sensitive individuals are to socially acquired information (x) and how

responsive they are to environmental information (c). In constructing this mathematical

expression, the students referenced other similar expressions they had encountered in the

literature, but tailored it so that it incorporated the ideas that they had agreed were most

important. In constructing their full model, the CLIMB students had to decide both what

biological ideas to include and how to represent them in a way that was both logical and

resulted in a tractable expression, both forms of quite sophisticated meta-representational

competence in the sense that the students had to link the symbols to their meanings

(diSessa 2004).
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In conducting their numerical analysis they needed to reverse this strategy to make

biological sense of their model output. One of the strategies the students used in their

analysis was to plot changes in an output variable (vaccination levels) over a range of

different values of two input parameters: omega (x), or the level of infection at which non-

vaccinators are sensitive enough to information to switch to vaccinators, also called the

sensitivity to infection, and the rate of social learning (LS) the proportion of individuals

who participate in social learning interactions. They visualized this information on a

temperature plot with omega on the y-axis and LS on the x-axis. The rate of vaccination

was represented by color (in this case red corresponded to low levels of vaccination and

blue to high levels.) Once again, an inscription was integral in allowing them to reason

with their model. In the process of interpreting this plot, the parameter x emerged as a

predictor of vaccination levels. The CLIMB mentors instructed the students to spend some

time making sense of this parameter so that they could explain exactly what this parameter

meant conceptually. The following excerpt is an example of one such conversation (field

notes, August 10, 2009).

Nina: What is x [omega]? x is the sensitivity to infection right? Wait, that doesn’t make sense. The
less sensitive you are, the longer it takes to react?
Rose: Pick points in the regions and move up the plot.
Nina: As x is increasing people are becoming more sensitive. I don’t understand the red.
Rose: Red shows that there is no vaccinators basically. LS is the rate that people switch. It’s j [kappa]
times p.
Nina: p is the people who engage in pairwise interaction.
Lillian: x is the sensitivity of the proportion of those playing the social learning strategy.
Nina: What?
Romy: Of those who are doing social learning, how sensitive are they?
Nina: The red part is saying people are not sensitive enough? That means they are not going to
vaccinate?
Rose: Yeah, so there are no vaccinators and you get Schenzle-like dynamics [oscillations].
Romy: The reason the region is red is because of x, not j. The imitation dynamics do not matter.
Any x smaller than 5,000 should be red.

In the above excerpt the students are making sense of the concept of sensitivity to

infection, which is represented in their model by the symbol x and how it helps them

understand their model output. As Romy articulates at the end of this discussion, this plot

allowed them to see that this concept of sensitivity to information was an idea they needed

to think more about. This plot became the focus of their analysis, and while it made no

precise predictions, the faculty found it exciting because it suggested to them that this

parameter x, this concept of sensitivity of infection, might be important enough to inspire

future investigations (field notes, August 10, 2009).

Professor S: I am totally excited by that plot! You have gotten to the point where you can create that
figure, and you even have a story about why you have it. That is what you are hunting for, the types
of figures where there is a clear story. It is interesting because something happens at the critical point
where x is 5,000, and there is a reason for why it happens that you can examine.

In summary, conceptual and representational work was important both during model

construction and model analysis. In building their model the students had to carefully

define the elements they were including in their model and make decisions about how to

represent relationships among model elements mathematically. Then, during analysis, the

students had to interpret the mathematical results they generated in terms of biological

concepts. In the process they identified omega, a parameter, but also an idea, or concept,

that emerged from their work. The ideas that the students were able to draw out of the

temperature plot formed the core of their results, yet these ideas were not specific
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predictions about how a measles infection could be expected to behave in a real population.

Nor were these ideas sufficient to explain the specific data patterns of measles incidence

that were the inspiration for their work. Rather, they were qualitative descriptions that

identified conceptual entities that have the potential to play an important role in this

complex system.

2.5 The Importance of Matching the Data

Early on in the project the CLIMB mentors highlighted the value of building a model that

could speak to actual data. In May, the group was still deciding which disease they might

want to model, and they were given the following advice (field notes, May 8).

Professor R: In terms of the flu, spend some time thinking about what there is to model that would be
gratifying. What are you trying to predict that you could use as the basis of your model? Is there some
pattern that you are trying to explain?
Professor R: Or look at the theory to see what people are trying to explain. If they are trying to make
a prediction, then what is it they are trying to predict and why? There could be a previously
documented case; there could be some data there. If I change this what is the impact? That is how you
can use a model to do experiments. Make a list, and tell us what each of those papers is trying to
explain, and what the paper did to try to improve on the power to explain some pattern. This is all
about patterns in nature. What makes science, science is there is some pattern that we are trying to
explain and understand. If you don’t know anything about those patterns then it is hard to come up
with a framework.

Here Professor R is advising the students to use data patterns as the inspiration for their

modeling project. He wanted them to ground their inquiry in an empirical pattern that had

already been identified. Ultimately, it was this discussion that led the students to abandon the

idea of modeling the flu virus in favor of measles. As they explained to their mentors a few days

later after looking for data patterns in the scientific literature (field notes, May 12, 2009):

Romy: There were just too many variables for what causes flu. And the data are all local, not global.
GTA: So the difficulty of the flu made you decide to go to MMR?
Lillian: After Professor R picked it apart we needed a new question.
Romy: He basically said, what if there is not a pattern?
Rose: We found a survey on flu, and it said that of people that refuse vaccination, only 7% said it was
because it didn’t work last year.
Romy: And the vaccination rate for flu is fairly constant - around 30%.
Rose: The biggest reason people don’t vaccinate was economic.

The CLIMB students had been interested in how vaccinator behavior in one year might

influence flu dynamics in subsequent years, but this initial lack of data shifted the group’s

attention to measles. The group was able to find data from the United Kingdom that

described how vaccination levels dropped in 2003, presumably as a result of a vaccine

scare linking vaccination to autism. These data were what initially inspired the group to

focus on the effects of voluntary vaccination on disease dynamics. However, as we have

already described, the focus of the project shifted from explaining this graph to exploring

ideas about human vaccination behavior and disease spread more generally.

As the project drew to a close, the students got anxious for more precise results, and they

proposed to use their model to replicate the actual pattern of disease incidence in the UK as a

result of the 2003 vaccine scare. They stated that they hoped they would be able to predict

precisely how long it would take for the population to regain pre-scare vaccination levels. The

students proposed that the answer to the question, how much time will pass after vaccine scare

before we reach pre-scare levels, would be an important main result. But the faculty saw their

project as productive in a different way (field notes, August 25, 2009):
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Professor R: This question strikes me, as it’s stated, as almost trivial because we actually know how
much time will pass. What motivated you to do this, it seems to me, is trying to understand the
processes that are likely to influence what we are talking about. Age structure and how information
about vaccine scares is transmitted absorbed and used - those are two likely factors as suggested from
other models.

Professor R refocused their attention on their theoretical contribution, that of exploring a

model that included both age-structure and voluntary vaccination. Still the students seemed

anxious about this as an important result (field notes, August 25, 2009):

Kevin: We are unsure of what to show. What is worth showing? I don’t know if the bifurcation is
worth showing.
Professor S: Are you spending time reproducing the UK dynamic?
Rose: It’s been hard. And we recently found age-specific notification of the disease, and we tried to
incorporate that as initial conditions. But we are still having problems with the vaccination being low
and not that many infected.
Professor S: If you can’t replicate it, then you can’t. Several articles couldn’t do that. Focus on the
bifurcation plot.

Ultimately, in the final presentation of their work, the students emphasized the importance

of their model in exploring the possible roles of social and environmental learning on

vaccination levels and disease dynamics and, for the most part, accepted that making

accurate predictions was not an outcome of their modeling. As one student put it, when

asked about the major contribution of their work: [Interview, September, 24, 2009]

Romy: Honestly, I feel like even though we originally wanted to talk about vaccine scares and stuff, I
think incorporating environmental learning and like saying like… there are different ways that people
learn, that people haven’t necessarily examined through modeling or you know empirical data about
how people learn, or how vaccines…. So like here’s two ways that can affect how people learn about
vaccines and how it could affect the vaccination rates and infection rates.
…
Interviewer: So, what do you think are the strengths and weaknesses of the model that you ended up
with?
Romy: Mm strengths are it’s, it obviously does, I don’t know, that actually the model suggests
something, like it works I guess, like it incorporates things that…both it incorporates really all the
things relevant to measles and MMR vaccination, at least like empirically and what we think as
scientists or whatever. But, and it seems to give qualitatively really interesting results. On the flip
side of that, as a weakness it doesn’t give quantitatively correct results.
Interviewer: Mm hmm. So how problematic is the quantitative mismatch from your point of view?
Romy: Um, it would have been nice, to get, you know, something that reflected real data. But at the
same time,…I feel like it’s something that can be tweaked with the parameter values of like our
constant values. So maybe our constants are not necessarily what the contact rates are out there right
now or something. So it’s something that can change. I don’t think it’s a huge, huge issue.

The above examples show that the distinctions that philosophers of biology have chosen to

highlight were relevant in this educational setting. Throughout their inquiry the CLIMB

students used models to help them frame their research question, explore ideas, and refine

their conceptual understanding. Their attempt to match their model output to the existing

empirical data was arguably one of the least productive aspects of their project. We do not

highlight this to suggest that evaluating models empirically is not an important part of

science. Ultimately, models, including the model built by the CLIMB students, need to

answer to empirical data. The point here is that given the exploratory nature of their

project, matching to data did not need to be the highest priority. As the faculty mentors

stated, predicting how long it would take for the vaccine to reach pre-scare levels was not

something their model was built to do. If they had wanted to build a model that could make

this sort of prediction they would have had to make different decisions in the construction

of their model, namely focusing much more carefully attending to how time was
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represented in their model. In focusing on this match (or lack of match) the students were

applying inappropriate epistemic criteria. Moreover, they were overlooking the potential of

their model to introduce new concepts worthy of further exploration. To reiterate the point

made by Levins: ‘‘modelers always must keep in mind that the utility of their construct

depends on the particular purpose for which it was built’’ (1985, p. 8, as cited in

Odenbaugh 2005, p. 253).

3 Discussion and Implications

The examples presented from the CLIMB program were chosen to highlight how attention

to studies of scientific practice can inform our understanding of learning environments in

science. More specifically, we argue that explicit attention to the different uses of models

can engage students in meta-strategic reasoning. For example, the CLIMB group began

their project by evaluating models in the scientific literature. They did so by both con-

sidering the kinds of data the models could explain (i.e. could the models replicate the

kinds of biennial cycles typical of measles incidence?), and also by evaluating the theo-

retical contributions of each model (i.e. did the models include ideas about age-structured

populations?). They used these models as a baseline against which to compare their own

ideas. As a group they discussed both whether the models were able to account for the

existing data patterns of disease dynamics as well as considering what possible mecha-

nisms might be missing from these models.

The students’ analysis of existing models provided the backdrop against which they

defined and refined their approach to model construction. Constructing a model required a

great deal of creative thought. The students used analogical reasoning to incorporate and

modify aspects of others’ models into their own. They also generated a list of candidate

mechanisms and reasoned abductively to choose those that were both plausible and trac-

table. In formally articulating the relationships in their model, the students consciously left

out realistic details in order to gain analytic power. Finally, in the analysis of their ultimate

model, the students did not examine whether the model was able to fit the data. Rather,

with guidance from the CLIMB mentors, they used their model output to explore quali-

tative trends that would help them begin to build a conceptual understanding of the

potential relationships among model parameters. During this phase of their modeling

project the CLIMB students designed inscriptions that allowed them to visually explore

how various model components influenced the model output. The resulting temperature

plots showed how values of key variables such as vaccination rate and disease incidence

fluctuated over different parameter values and allowed the group to speculate on the

relative importance of different forms of human learning on the spread of disease.

The CLIMB experience provided a context in which students were engaged in creative

and productive forms of model-based reasoning, using the model to explore novel ideas

and to consider as yet untested possibilities. The CLIMB mentors, who were biologists and

modelers, were largely responsible for helping the students find and follow productive lines

of inquiry. At times this meant abandoning particular aims (i.e. constructing a model that

can replicate existing data patterns) in favor of new aims (i.e. exploring parameter values

to consider their possible influence on the system). These shifts exemplify the pragmatic

nature of scientific practice and how modeling is best conceived of as a set of strategies

that can serve a variety of epistemic aims.

It was the objective of the CLIMB program to train future scientists in modeling so that

they would be more likely to uptake and carry these strategies with them as they move into
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positions as professional biologists or mathematicians. It is our contention that students are

more likely to do so if they have an appreciation for when, how and why modeling can

inform scientific research. Smith et al. (1997) describe a similar program involving groups

of graduate students engaged in mathematical modeling in the context of ecology. In

reflecting on this experience and the successes and failures of the participants, the program

mentors, a biologist and a modeler, articulated what they saw as the most productive

approaches to using models in biology. The aims they list: exploring dynamic patterns,

ruling out possibilities, suggesting new areas for research, and developing new knowledge

(p. 467), closely mirror those presented by Odenbaugh, most notably in their emphasis on

models as ‘‘epistemological objects’’, rather than representations that mimic reality. The

reflections of these scientists as well as our observations of students engaging in modeling

in practice further emphasize the importance of training future scientists, and future

biologists in particular, to understand the aims and purposes of modeling so that the

cognitive strategies of modeling will be relevant and available to them.

The CLIMB program was designed as a science traineeship, a context very different

from science classrooms in many ways. We now turn our attention to the ways in which the

lessons we have learned from this research might apply to science education in K-12

classrooms.

3.1 Contextualizing Modeling and Model-Based Reasoning in Classrooms

Understanding of the diversity of ways in which modeling supports scientific inquiry can

help educators make decisions about how exactly to incorporate models into science

curricula (c.f. Lehrer and Schauble 2006). Moreover, if educators make a conscious effort

to cultivate a variety of uses for models in science, we believe that students will have at

their disposal a greater number of tools for reasoning and a greater appreciation for the

dynamic and context-dependent nature of scientific practice.

We build on the work of scholars like Schwarz et al. (2009), who have outlined a

learning progression for teaching modeling that emphasizes the importance of integrating

modeling practice with an understanding of the nature and purposes of modeling, which

they refer to as metamodeling knowledge. We agree that this integration of practice and

purpose is the key to successfully teaching modeling. However, we wish to add to the

general account presented by Schwarz et al. an appreciation that modeling, as practiced by

scientists, is always grounded in a specific context (Lehrer et al. 2008; Smith et al. 1997). If

modeling is meant to reflect authentic scientific reasoning and authentic features of the

nature of science, there needs to be more clarity surrounding both what it means to practice

modeling and the specific purposes that modeling can support.

In the science education literature modeling tasks often emphasize the need for students

to fit real systems or match some existing target model (e.g. Harrison and Treagust 2000;

Gobert 2005; Schwarz and White 2005; Lehrer et al. 2008; Schwarz et al. 2009). Our

contention is not that these are unimportant roles for models, but that by emphasizing the

need for models to fit with reality they underemphasize other important forms of model-

based reasoning. If modeling is understood only in relation to explaining and predicting

(c.f. Koponen 2007), we believe that important aspects of productive scientific thought will

be neglected. We saw some indications of this in the CLIMB project. When the CLIMB

students were fixated on the idea that a model should be predictive, they began to try to fit

prediction into their inquiry, which, in effect, distracted them from potentially more

meaningful theoretical contributions of their work.
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Part of the solution, as we see it, is to be explicit about the fact that modeling can play

different roles in different contexts. We argue that a key aspect of metamodeling knowl-

edge is being able to distinguish among different purposes and forms of modeling in a

contextually relevant way. This point has been made about inquiry more generally (e.g.

Hammer et al. 2008; Ford and Forman 2011). As notions of what counts as inquiry

continue to expand (Grandy and Duschl 2007), it is important to clarify the context of their

use. As alluded to by Tang et al. (2010), it is not enough to expand the definition of inquiry

to include a long list of possible activities. Removed from the context of an actual problem

or question, the reasons for choosing one activity over another are obscured—the same

applies to the strategies of modeling.

As part of their learning progression, Schwarz et al. (2009) include as a goal that

students recognize that different models have different strengths or weaknesses, and that

sometimes multiple models might be needed to account for complex phenomena. They do

not, however, specify when multiple models might be needed or what kinds of strengths

and weaknesses such models might have. Ultimately, these kinds of decisions can only be

made in the context of practice by choosing a model that can best support the relevant

aims. Consider for example an excerpt from Schwartz et al. in which a group of students

are discussing their ideas about the uses of models. Schwarz et al. (2009, p. 646) present

this as an example of confusion about the use of models and write that,

… sometimes students struggled with using a model to make predictions. For example, in one
conversation, two students suggested that ‘‘your model can be your best guess,’’ while others dis-
agreed, stating that ‘‘to make it accurate… you can’t really model it without knowing.’’ Another
student pointed out that ‘‘like your prediction,’’ you can build a model representing ‘‘stuff that you
think is true,’’ and then ‘‘after you get the information you can make the model then’’ [Interview #7,
Lesson 8].

Several different ideas about models are raised in this short excerpt, and while we cannot

attribute a deep understanding of these ideas to any of these students, we view their

statements as the fodder for a potentially sophisticated discussion about the multiplicity of

roles that models can play. The idea that a model is a ‘‘best guess’’ emphasizes the

important role that models play, often early in an inquiry, to articulate hypotheses and

organize prior knowledge. Another student emphasizes the importance of a model holding

‘‘accurate’’ information, another legitimate role for models, in particular when a model is

being used to explicate the details of how some process works. Another student emphasizes

a slightly different role for models by suggesting that the model represents a testable

hypothesis, ‘‘a prediction’’ or the ‘‘stuff you think is true’’. This stance is a potentially

productive starting point for motivating the need for empirical studies or other kinds of

model evaluation. While there are only fragments of ideas in this short excerpt, it hints that

even middle school students, after working with models in their classrooms, are able to

pick up on the different roles that models can play. This points to the potential of being

explicit about encouraging and legitimizing these intuitive ideas of students in a rich

modeling context.

3.2 Developing the Strategies of Modeling

CLIMB was an advanced program for undergraduates, and some might argue that younger

students do not have the degree of epistemological sophistication to use models in a variety

of different ways. For example, much has been made of Grosslight et al.’s (1991) char-

acterization of students as epistemologically naı̈ve about models. However, it is important

to remember that these results represent students’ unscaffolded, decontextualized ideas
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about models and do not reflect what students can do with models in more supportive or

appropriately contextualized settings. Our interpretation of Grosslight et al.’s findings is

that the student responses they collected reflect the simplistic definitions of models that are

typically presented in school, but are not representative of what students can do when

engrossed in more authentic modeling activities.

Emerging evidence suggests that even young children have the capacity to engage in

abstract and theoretical discussions, but that the consistency with which they are able to do

so is largely context-dependent (e.g. Hammer et al. 2008 and references therein). A study

by Metz (2010) investigated second grade students’ success at independently developing

and implementing an inquiry project. Metz’s analysis shows that these students were able

to engage in fairly sophisticated epistemological themes. Metz concluded that,

… under particular instructional conditions, even second graders can take their investigation—
including the plan they devised to investigate their question, the implementation of the plan, and the
inferences they based on their data—as an object of critical reflection. In other words, they viewed
their investigation as a tool, problematic in specific ways, to try to address their question (p. 283).

However, Metz’s analysis revealed that while children were able to identify theoretical

uncertainties in their investigations, they had few, if any, strategies for dealing with that

uncertainty. She suggests that this was due in part to the lack of curricular support for

developing theoretical understanding (Metz 2010, p. 267). Like Metz, we believe that the

root of this challenge is more likely to be instructional rather than developmental.

A recent study by Pluta et al. (2011) provides further evidence that is specific to the

context of modeling. Without significant instruction, middle school students were able to

generate a variety of epistemic criteria for evaluating scientific models. When prompted to

list the features of a good model, students responded with epistemic criteria such as

communication, explanatory power, and fit to data. However, the most common responses

had to do with the amount of detailed information presented in the models, suggesting that

students were thinking of models primarily as useful for conveying information, much as a

textbook diagram would. One weakness of this study is that this model evaluation task was

framed without reference to a particular problem, question or aim. It is difficult to tell how

students would have interpreted the task of ‘‘making a list of the most important charac-

teristics of good (rather than bad) models’’ without a specific purpose in mind. Looking

closer at the nature of that task, students were asked to evaluate a variety of static rep-

resentations of models including diagrams, pictures and text similar to what they might see

in textbooks (p. 500). Given that in the context of this task, students were interacting with

final form models, it is not surprising that many students describe models as tools that help

communicate ideas, rather than objects to support scientific inquiry. Nevertheless, this

study suggests that students do have some resources for thinking about using models in a

variety of ways and supports the argument that the aim of instruction should be to reinforce

and refine these ideas with reference to particular scientific aims. We caution against

teaching epistemic criteria to students as a normative list of characteristics of ‘‘good

models.’’ Such criteria cannot be universally applied to all models, and while we agree that

ultimately model accuracy is a primary aim in science, it is not always the most appropriate

or relevant aim for scientific reasoning.

We envision metamodeling knowledge as an understanding of the variety of aims that

models can serve in scientific practice and an ability to apply the epistemic criteria that are

relevant to those aims. In this way our version of metamodeling knowledge is similar to

Ford’s notion of a ‘‘grasp of practice’’ (2008; Ford and Forman 2011). Developing a grasp

of practice means that students begin to know the criteria that can be used to evaluate
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knowledge claims, use those criteria in the context of their own practice and understand

how those claims are used in the scientific community (Ford 2008). Like Ford, we are

advocating for a more flexible understanding of scientific practice and a version of science

learning that helps students understand and reflect on why they are doing what they are

doing rather than learning a normative set of rules.

We acknowledge that developing a meta-understanding of the roles of modeling in

scientific practice will require repeated and extended opportunities to practice modeling

and reflect on that practice. We therefore argue that it is important to develop curricula that

challenge students to consider the purpose of the modeling activity they are engaged in for

a range of grade-levels. The kinds of challenges that different students might face are open

to investigation, since as far as we know students, especially younger students, are rarely

asked to consider the epistemic aims of their scientific practice. With this in mind, we offer

some general suggestions for how we might begin to introduce these ideas into science

classrooms over a broad range of grade-levels, and acknowledge that this is an open area

for research.

3.3 Implications for Classroom Enactments of Modeling

We suggest that curriculum developers begin by considering the kinds of reasoning they

want to support and then designing modeling tasks that will best support that kind of

reasoning. At times this goal might be to teach students how to generate and test accurate

explanations and predictions. At other times, modeling can be used to guide the initial

phases of developing a research question, identifying knowledge gaps or locating problems

of interest. In this sense our conception of modeling is similar to Windschitl et al.’s

(2008b) definition of model-based inquiry—a term that suggests that modeling, is not

simply a method in science, but rather a collection of methods that permeate every stage of

the inquiry process from organizing and understanding a problem to testing and evaluating

explanatory models, and proposing arguments about the adequacy of a particular model

and how it might be revised, expanded and improved. Designing curricula that embody the

complexities of modeling as practiced by scientists is a significant challenge. It is much

easier to implement simple algorithms than support the contingent and unpredictable

nature of authentic model-based inquiry. However, oversimplified, epistemically inaccu-

rate, and reasoning-poor conceptions of scientific practice have dominated science edu-

cation for too long. We maintain that we can no longer afford to shy away from this

challenge, and we see several reasons to be hopeful that such change is possible.

In the interest of sparking a conversation about instructional implementation, Winds-

chitl et al. (2008a) presented a framework for supporting model-based inquiry that revolves

around a series of four conversations that they argue should form the backbone of class-

room activity. They are: 1. Organizing What We Know and What We Want to Know, 2.
Generating Testable Hypotheses, 3. Seeking Evidence, 4. Constructing an Argument. For

each of these conversations the authors propose a list of potential ‘‘starter-questions’’ that

could form the basis of classroom discussions that accompany modeling activities. Many

of these questions are aimed at supporting critical reflection about the use of modeling in

the classroom, and we encourage readers to consult the original paper for a more detailed

discussion of their use (Windschitl et al. 2008a, p. 17–19). For our purposes, we explore a

few examples that have the potential to help instructors and students begin to address some

of the epistemological themes relevant to those we have raised in this article.

What are we leaving out of our model and why? (p. 17) is a question that could form the

basis for the kinds of analogical and abductive reasoning we saw CLIMB students engage
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in as they struggled to make decisions about what to include and what to leave out of their

model and to justify those decisions. The question provides a way to go beyond stating that

models are simplifications to support important conversations about when simplifications

are appropriate and why. This question suggests the need for conversations about using

simple models in strategic ways. We imagine that a follow-on to this question might be:

Why, and under what circumstances is it okay to leave things out of a model?
What do we already think we know about this situation, process, or event? Which of the

elements of what we know are based on observations? Inference? Other sources of informa-
tion? (p. 17.) These questions focus attention on the formation of how possibly explanations and

form the basis for conjectures that inform model construction. In the context of these sorts of

questions the model is a tool for organizing what is known, what is possible, and for localizing

gaps in need of further inquiry. Just as the CLIMB students relied on their evolving model to

hold their ideas, model building in the classroom can support discussions that are explicitly

epistemological in nature. Such discussions can potentially make use of students’ prior

knowledge by converting it into a potential object of investigation.

When we look at our tentative model and consider the question we want to ask, what
would our models predict? (p. 18.) To this we add: Do we expect our model to produce
accurate predictions? Why or why not? These questions are necessary precursors to asking

students to make predictions. They first ask students to consider what those predictions

might look like, and then ask them to consider the accuracy of those predictions. Such

questions could support thought experiments much like the ones the CLIMB mentors asked

the CLIMB students to conduct, which were crucial to the decision making processes

involved in model construction. Part of choosing how to construct a model involves

imagining how the output of the model might change as a result of the choices made during

construction. Such conversations could also spur discussions about what ‘‘fitting the data’’

really means. How close must the fit be? Is the lack of fit due to our model or our
experimental procedures?

What does it mean if our model cannot produce accurate predictions? How consistent
and coherent is our final explanation with the phenomenon of interest? (p. 19.) Finally, it is

important that instead of telling students that models are predictive and explanatory, that

we engage them in a discussion of what predictive accuracy and explanatory power really

mean. As the CLIMB project showed us, predictive models are not necessarily always very

informative. Our model may not be completely consistent with the details of reality, but

can it still help us make better sense of the world? Questions such of these can stimulate

explicit discussions about the nature of prediction and explanation, when the two are in

line, and what it means when they are not.

While these kinds of conversations can be productive starting points, ultimately the success

of model-based instruction hinges on embedding these discussions within authentic and well-

designed tasks—tasks in which the model plays a key role in helping students reason scien-

tifically and in which that role has been made clear for the students. The strategies of modeling

in science are most powerful when linked to an authentic scientific aim.

4 Conclusion

The aim of this paper has been to expand the conversation about the nature of modeling in

science education by drawing on the insights of philosophers of biology. Our hope is that

what we add to the conversation is a sensitivity to the context of model use both in terms of

the discipline and the phenomena under investigation. We believe our analysis of the work
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of the CLIMB students using Odenbaugh’s framework makes a strong argument for the

need to engage students in extended authentic modeling experiences, which have the

potential to provide the opportunity for students to encounter a range of scientific reasoning

strategies situated within the context of specific epistemic aims. We further believe that

attention to the relevant details of context can help scaffold teachers and students in

deciding when and why it is appropriate to engage in the various different practices that

constitute modeling or model-based inquiry. In our future work we plan to develop these

ideas in ways that can help us translate the insights of philosophers, historians and psy-

chologists of science into productive conversations and practices in science classrooms.

We hope that others will take up this challenge as well.
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