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p888, which contains a Bam HI to Not I fragment
encoding a full-length profilin cDNA (16); p989,
which encodes a mutant form of profilin, Pfy1p-3,
lacking the last three amino acids (18); p890, which
contains the Bgl II to Stu I fragment from p182 (26),
encoding Bni1p(1227–1397); p813, which con-
tains the Bgl II to Not I fragment from p182, encod-
ing Bni1p(1414–1953); and p951, which contains
the Hpa I to Not I fragment from p182, encoding
Bni1p(1647–1953). The pJG4-5–derived plasmids
were p561, which contains the Bam HI to Not I
fragment from p532 (26), encoding Bni1p(1–1953);
p717, which contains the Bam HI to Eco47 III frag-
ment from p532, encoding Bni1p(1–1214); p558,
which contains the Eco 47III to Not I fragment from
p182, encoding Bni1p(1215–1953); p913, which
contains the Bgl II to Stu I fragment from p182,
encoding Bni1p(1227–1397); p929, which con-
tains the Bgl II to Not I fragment from p182, encod-
ing Bni1p(1414–1953); p952, which contains the
Hpa I to Not I fragment from p182, encoding
Bni1p(1647–1953); and p887, which contains the
Bam HI to Not I fragment encoding a full-length
profilin cDNA (16). The pACT-derived plasmid was
p1124, encoding full-length Act1p as isolated in a
catch and release screen (22). The pGAD-C–de-
rived plasmid was p688, encoding the COOH-ter-
minal 311 amino acids (478–788) of Bud6p, as
isolated in a catch and release screen (22).

29. For localization of Bni1p, SY2625 (11) cells carrying a
multicopy plasmid encoding either HA-tagged Bni1p
[pY39tet1 (9)] or nontagged Bni1p were induced to
form mating projections (12). HA-Bni1p was localized
by immunofluorescence with monoclonal antibody
HA.11(Berkeley Antibody Company) as described [J.
R. Pringle, A. E.M. Adams, D. G. Drubin, B. K. Haarer,
Methods Enzymol. 194, 565 (1991)]. For localization
of Bud6p, SY2625 cells expressing GFP-Bud6p (23)
or containing the control plasmid pRS316 (26) were
induced to form mating projections (12), then ob-
served by fluorescence microscopy with the use of a
fluorescein isothiocyanate filter set.

30. Yeast cells of strain B5459 (MATa pep4::HIS3
prb1D1-6R ura3 trp1 lys2 leu2 his3D200 can1) car-
rying p1025 (26) were grown to mid-log phase in
raffinose medium, and galactose was added to
induce the production of HA-tagged Bni1p(1215–
1953). After 1 hour, extracts were prepared by
grinding cells with glass beads in lysis buffer [0.6 M
sorbitol, bovine serum albumin (1%), 140 mM
NaCl, 5 mM EDTA, 50 mM tris-HCl (pH 7.6), 0.06%
Triton X-100, 2 mM phenylmethylsulfonyl fluoride,
aprotinin (10 mg/ml)] as described (2). Escherichia
coli strain BL 21 (Novagen) was transformed with
pGEX-3X (Pharmacia) or p907 (26) and induced for
expression of GST or GST-profilin, respectively.
GST proteins were purified on glutathione-Sepha-
rose (Pharmacia) and washed twice with phos-
phate-buffered saline (PBS) [140 mM NaCl, 2.7
mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 (pH
7.3)]. Glutathione-Sepharose beads with GST or
GST-profilin bound were then added to the yeast
extract containing HA-Bni1p(1215–1953) and in-
cubated on ice. After 45 min, the beads were col-
lected and washed twice with PBS. The GST pro-
teins and associated proteins were eluted with glu-
tathione [10 mM glutathione, 50 mM tris-HCl (pH
8.0)] and subjected to immunoblot analysis with
antibodies to GST (Pharmacia) or the HA epitope
(29) as described (27).
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and I. Pot for assistance with experiments. Support-
ed by grants to C.B. from the Natural Sciences and
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the Swiss National Science Foundation to M.P.; and
by NIH grant GM31006 to J.R.P.

2 December 1996; accepted 10 February 1997

A General Model for the Origin of Allometric
Scaling Laws in Biology

Geoffrey B. West, James H. Brown,* Brian J. Enquist
Allometric scaling relations, including the 3/4 power law for metabolic rates, are char-
acteristic of all organisms and are here derived from a general model that describes how
essential materials are transported through space-filling fractal networks of branching
tubes. The model assumes that the energy dissipated is minimized and that the terminal
tubes do not vary with body size. It provides a complete analysis of scaling relations for
mammalian circulatory systems that are in agreement with data. More generally, the
model predicts structural and functional properties of vertebrate cardiovascular and
respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution
networks.

Biological diversity is largely a matter of
body size, which varies over 21 orders of
magnitude (1). Size affects rates of all bio-
logical structures and processes from cellu-
lar metabolism to population dynamics (2,
3). The dependence of a biological variable
Y on body mass M is typically characterized
by an allometric scaling law of the form

Y 5 Y0Mb (1)

where b is the scaling exponent and Y0 a
constant that is characteristic of the kind
of organism. If, as originally thought, these
relations reflect geometric constraints,
then b should be a simple multiple of
one-third. However, most biological phe-
nomena scale as quarter rather than third
powers of body mass (2–4): For example,
metabolic rates B of entire organisms scale
as M3/4; rates of cellular metabolism,
heartbeat, and maximal population
growth scale as M21/4; and times of blood
circulation, embryonic growth and devel-
opment, and life-span scale as M1/4. Sizes
of biological structures scale similarly: For
example, the cross-sectional areas of mam-
malian aortas and of tree trunks scale as
M3/4. No general theory explains the ori-
gin of these laws. Current hypotheses,
such as resistance to elastic buckling in
terrestrial organisms (5) or diffusion of
materials across hydrodynamic boundary
layers in aquatic organisms (6), cannot
explain why so many biological processes
in nearly all kinds of animals (2, 3), plants
(7), and microbes (8) exhibit quarter-pow-
er scaling.

We propose that a common mechanism

underlies these laws: Living things are sus-
tained by the transport of materials
through linear networks that branch to
supply all parts of the organism. We de-
velop a quantitative model that explains
the origin and ubiquity of quarter-power
scaling; it predicts the essential features of
transport systems, such as mammalian
blood vessels and bronchial trees, plant
vascular systems, and insect tracheal
tubes. It is based on three unifying princi-
ples or assumptions: First, in order for the
network to supply the entire volume of
the organism, a space-filling fractal-like
branching pattern (9) is required. Second,
the final branch of the network (such as
the capillary in the circulatory system) is a
size-invariant unit (2). And third, the en-
ergy required to distribute resources is
minimized (10); this final restriction is
basically equivalent to minimizing the to-
tal hydrodynamic resistance of the system.
Scaling laws arise from the interplay be-
tween physical and geometric constraints
implicit in these three principles. The
model presented here should be viewed as
an idealized representation in that we ig-
nore complications such as tapering of
vessels, turbulence, and nonlinear effects.
These play only a minor role in determin-
ing the dynamics of the entire network
and could be incorporated in more de-
tailed analyses of specific systems.

Most distribution systems can be de-
scribed by a branching network in which
the sizes of tubes regularly decrease (Fig.
1). One version is exhibited by vertebrate
circulatory and respiratory systems, anoth-
er by the “vessel-bundle” structure of mul-
tiple parallel tubes, characteristic of plant
vascular systems (11). Biological networks
vary in the properties of the tube (elastic
to rigid), the fluid transported (liquid to
gas), and the nature of the pump (a pul-
satile compression pump in the cardiovas-
cular system, a pulsatile bellows pump in
the respiratory system, diffusion in insect
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2uk 5 Ncprc

2uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1
nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)

3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)

3Nk ' 4/3p(lk11/2)
3Nk11. This

relation gives g3k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1.Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k5N ); and (D) parameters of
a typical tube at the kth level.
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depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk
Nk

5 O
k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)

Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output)W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S cc0D
2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr

2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of theWomersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k5 k from area-preserving
pulse-wave flow inmajor vessels to area-increasing
Poiseuille-type flow in small vessels.
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is well supported by empirical data (18, 20,
21). The crossover from one behavior to the
other occurs over the region where the wave
and Poiseuille impedances are comparable in
size. The approximate value of k where this
occurs (say, k) is given by r k

2 /l k ' 8m/rc0,
leading toN2 k[N' ln(8mlc/rc0rc

2)/ln n,
independent of M. Thus, the number of
generations where Poiseuille flow dominates
should be independent of body size. On the
other hand, the crossover point itself
grows logarithmically: k } N } ln M. For
humans, with n 5 3 (21), N ' 15 and
N ' 22 (assuming Nc ' 2 3 1010), where-
as with n 5 2, N ' 24 and N ' 34. These
values mean that in humans Poiseuille
flow begins to compete with the pulse
wave after just a few branchings, dominat-
ing after about seven. In a 3-g shrew,
Poiseuille flow begins to dominate shortly
beyond the aorta.

The derivation of scaling laws based on bk
derived from Eqs. 7 and 8 (Fig. 2) leads to the
same results as before. For simplicity, assume
that the crossover is sharp; using a gradual
transition does not change the resulting scal-
ing laws. So, for k . k, define bk [ b. 5
n21/3 and, for k , k, bk [ b, 5 n21/2. This
predicts that area preservation only persists
in the pulsatile region from the aorta
through the large arteries, at most until k '
k. First consider the radius of the aorta r0: its
scaling behavior is now given by r0 5
rcb.

k 2Nb,
k 5 rcn

1/3N11/6k 5 rcn
1/2N21/6N,

which gives r0 } M3/8 and, for humans, r0/rc
' 104, in agreement with data (2) . Using
Eq. 3 we obtain, for the ratio of fluid
velocity in the aorta to that in the capil-
lary, u0 / uc 5 Nc(rc/r0)

2 5 nN/3u0 / uc '
250, independent of M, again in agree-
ment with data. Because g reflects the

space-filling geometry, it remains un-
changed, so we still have l0 } M1/4. Blood
volume Vb, however, is more complicated

Vb 5
Vc

~b.
2 g!N HSb.

b,
D2k̄ 1 2 ~nb,

2 g!k̄

1 2 ~nb,
2 g!

1 F1 2 ~nb.
2 g!N

1 2 ~nb.
2 g!

2
1 2 ~nb.

2 g!k̄

1 2 ~nb.
2 g! GJ (9)

This formula is a generalization of Eq. 4
and is dominated by the first term, which
represents the contribution of the large
tubes (aorta and arteries). Thus, Vb }
nN11/3k } n4/3N, which, because it must
scale as M, leads, as before, to a 5 3/4. As
size decreases, the second term, represent-
ing the cubic branching of small vessels,
becomes increasingly important. This be-
havior predicts small deviations from
quarter-power scaling (a * 3/4), observed
in the smallest mammals (2). An expres-
sion analogous to Eq. 9 can be derived for
the total impedance of the system Z. It is
dominated by the small vessels (arterioles
and capillaries) and, as before, gives Dp
and u0 } M0.

In order to understand allometric scal-
ing, it is necessary to formulate an integrat-
ed model for the entire system. The present
model should be viewed as an idealized
zeroth-order approximation: it accounts for
many of the features of distribution net-
works and can be used as a point of depar-
ture for more detailed analyses and models.
In addition, because it is quantitative, the
coefficients, Y0 of Eq. 1, can also, in prin-
ciple, be derived. It accurately predicts the
known scaling relations of the mammalian

cardiovascular system (Table 1); data are
needed to test other predictions. For exam-
ple, the invariance of capillary parameters
implies Nc } M3/4 rather than the naı̈ve
expectationNc } M, so the volume serviced
by each capillary must scale as M1/4, and
capillary density per cross-sectional area of
tissue, as M21/12.

A minor variant of the model describes
the mammalian respiratory system. Al-
though pulse waves are irrelevant because
the tubes are not elastic, the formula for Z is
quite similar to Eq. 8. The fractal bronchial
tree terminates in NA } M3/4 alveoli. The
network is space-filling, and the alveoli play
the role of the service volume accounting
for most of the total volume of the lung,
which scales as M. Thus, the volume of an
alveolus VA } M1/4, its radius rA } M1/12,
and its surface area AA } rA

2 } M1/6, so the
total surface area of the lung AL 5 NAAA }
M11/12. This explains the paradox (22) that
AA scales with an exponent closer to 1 than
the 3/4 seemingly needed to supply oxygen.
The rate of oxygen diffusion across an alve-
olus, which must be independent of M, is
proportional to DpO2AA/rA. Thus, DpO2 }
M21/12, which must be compensated for by a
similar scaling of the oxygen affinity of he-
moglobin. Available data support these pre-
dictions (Table 1).

Our model provides a theoretical, mech-
anistic basis for understanding the central
role of body size in all aspects of biology.
Considering the many functionally inter-
connected parts of the organism that must
obey the constraints, it is not surprising that
the diversity of living and fossil organisms is
based on the elaboration of a few successful
designs. Given the need to redesign the
entire system whenever body size changes,

Table 1. Values of allometric exponents for variables of the mammalian
cardiovascular and respiratory systems predicted by the model compared

with empirical observations. Observed values of exponents are taken from (2,
3); ND denotes that no data are available.

Cardiovascular Respiratory

Variable
Exponent

Variable
Exponent

Predicted Observed Predicted Observed

Aorta radius r0 3/8 5 0.375 0.36 Tracheal radius 3/8 5 0.375 0.39
Aorta pressure Dp0 0 5 0.00 0.032 Interpleural pressure 0 5 0.00 0.004
Aorta blood velocity u0 0 5 0.00 0.07 Air velocity in trachea 0 5 0.00 0.02
Blood volume Vb 1 5 1.00 1.00 Lung volume 1 5 1.00 1.05
Circulation time 1/4 5 0.25 0.25 Volume flow to lung 3/4 5 0.75 0.80
Circulation distance l 1/4 5 0.25 ND Volume of alveolus VA 1/4 5 0.25 ND
Cardiac stroke volume 1 5 1.00 1.03 Tidal volume 1 5 1.00 1.041
Cardiac frequency v 21/4 5 20.25 20.25 Respiratory frequency 21/4 5 20.25 20.26
Cardiac output Ė 3/4 5 0.75 0.74 Power dissipated 3/4 5 0.75 0.78
Number of capillaries Nc 3/4 5 0.75 ND Number of alveoli NA 3/4 5 0.75 ND
Service volume radius 1/12 5 0.083 ND Radius of alveolus rA 1/12 5 0.083 0.13
Womersley number a 1/4 5 0.25 0.25 Area of alveolus AA 1/6 5 0.083 ND
Density of capillaries 21/12 5 20.083 20.095 Area of lung AL 11/12 5 0.92 0.95
O2 affinity of blood P50 21/12 5 20.083 20.089 O2 diffusing capacity 1 5 1.00 0.99
Total resistance Z 23/4 5 20.75 20.76 Total resistance 23/4 5 20.75 20.70
Metabolic rate B 3/4 5 0.75 0.75 O2 consumption rate 3/4 5 0.75 0.76
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either during ontogeny or phylogenetic di-
versification, small deviations from quarter-
power scaling sometimes occur (3, 23).
However, when body sizes vary over many
orders of magnitude, these scaling laws are
obeyed with remarkable precision. More-
over, the predicted scaling properties do not
depend on most details of system design,
including the exact branching pattern, pro-
vided it has a fractal structure (24). Signif-
icantly, nonfractal systems, such as combus-
tion engines and electric motors, exhibit
geometric (third-power) rather than quar-
ter-power scaling (1). Because the fractal
network must still fill the entire D-dimen-
sional volume, our result generalizes to a 5
D/(D 1 1). Organisms are three-dimension-
al, which explains the 3 in the numerator of
the 3/4 power law, but it would be instruc-
tive to examine nearly two-dimensional or-
ganisms such as bryozoans and flatworms.
The model can potentially explain how
fundamental constraints at the level of in-
dividual organisms lead to corresponding
quarter-power allometries at other levels.
The constraints of body size on the rates at
which resources can be taken up from the
environment and transported and trans-
formed within the body ramify to cause
quarter-power scaling in such diverse phe-
nomena as rate and duration of embryonic
and postembryonic growth and develop-
ment, interval between clutches, age of first
reproduction, life span, home range and
territory size, population density, and max-
imal population growth rate (1–3). Because
organisms of different body sizes have dif-
ferent requirements for resources and oper-
ate on different spatial and temporal scales,
quarter-power allometric scaling is perhaps
the single most pervasive theme underlying
all biological diversity.
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Flexibility in DNA Recombination: Structure of
the Lambda Integrase Catalytic Core

Hyock Joo Kwon, Radhakrishna Tirumalai, Arthur Landy,*
Tom Ellenberger*

Lambda integrase is archetypic of site-specific recombinases that catalyze intermolec-
ular DNA rearrangements without energetic input. DNA cleavage, strand exchange, and
religation steps are linked by a covalent phosphotyrosine intermediate in which Tyr342

is attached to the 39-phosphate of the DNA cut site. The 1.9 angstrom crystal structure
of the integrase catalytic domain reveals a protein fold that is conserved in organisms
ranging fromarchaebacteria to yeast and that suggests amodel for interactionwith target
DNA. The attacking Tyr342 nucleophile is located on a flexible loop about 20 angstroms
from a basic groove that contains all the other catalytically essential residues. This
bipartite active site can account for several apparently paradoxical features of integrase
family recombinases, including the capacity for both cis and trans cleavage of DNA.

The integrase protein (Int) of Escherichia
coli phage lambda (l) belongs to a large
family of site-specific DNA recombinases
from archaebacteria, eubacteria, and yeast
(1–3) that catalyze rearrangements be-

tween DNA sequences with little or no
sequence homology to each other (4–8).
Like l Int, many of these recombinases
function in the integration and excision of
viral genomes into and out of the chromo-
somes of their respective hosts. Others
function in the decatenation or segrega-
tion of newly replicated chromosomes,
conjugative transposition, regulation of
plasmid copy number, or expression of cell
surface proteins. Integrase family members
have the distinctive ability to carry out a
complete site-specific recombination reac-
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